The title CuII macrocyclic complex salt tetra-hydrate, [Cu(C22H46N6O2)](C2H3O2)2·4H2O, sees the metal atom located on a centre of inversion and coordinated within a 4 + 2 (N4O2) tetra-gonally distorted coordination geometry; the N atoms are derived from the macrocycle and the O atoms from weakly associated [3.2048 (15) Å] acetate anions. Further stability to the three-ion aggregate is provided by intra-molecular amine-N-H⋯O(carboxyl-ate) hydrogen bonds. Hydrogen bonding is also prominent in the mol-ecular packing with amide-N-H⋯O(amide) inter-actions, leading to eight-membered {⋯HNCO}2 synthons, amide-N-H⋯O(water), water-O-H⋯O(carboxyl-ate) and water-O-H⋯O(water) hydrogen bonds featuring within the three-dimensional architecture. The calculated Hirshfeld surfaces for the individual components of the asymmetric unit differentiate the water mol-ecules owing to their distinctive supra-molecular association. For each of the anion and cation, H⋯H contacts predominate (50.7 and 65.2%, respectively) followed by H⋯O/O⋯H contacts (44.5 and 29.9%, respectively).
This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long-Evans rat model. After a one-week intervention, the animals' blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.