To evaluate the possibilities for biofuel and bioenergy production Acacia Holosericea, which is an invasive plant available in Brunei Darussalam, was investigated. Proximate analysis of Acacia Holosericea shows that the moisture content, volatile matters, fixed carbon, and ash contents were 9.56%, 65.12%, 21.21%, and 3.91%, respectively. Ultimate analysis shows carbon, hydrogen, and nitrogen as 44.03%, 5.67%, and 0.25%, respectively. The thermogravimetric analysis (TGA) results have shown that maximum weight loss occurred for this biomass at 357 °C for pyrolysis and 287 °C for combustion conditions. Low moisture content (<10%), high hydrogen content, and higher heating value (about 18.13 MJ/kg) makes this species a potential biomass. The production of bio-char, bio-oil, and biogas from Acacia Holosericea was found 34.45%, 32.56%, 33.09% for 500 °C with a heating rate 5 °C/min and 25.81%, 37.61%, 36.58% with a heating rate 10 °C/min, respectively, in this research. From Fourier transform infrared (FTIR) spectroscopy it was shown that a strong C-H, C-O, and C=C bond exists in the bio-char of the sample.
Three triorganotin(IV) compounds, R3Sn(L), with R = CH3 (1), n-C4H9 (2) and C6H5 (3), and LH = 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid, were prepared and confirmed by various techniques. A five-coordinate, distorted trigonal-bipyramidal geometry was elucidated for tin(IV) centres both in solution and solid states. An intercalation mode was confirmed for the compound SS-DNA interaction by UV-visible, viscometric techniques and molecular docking. MD simulation revealed stable binding of LH with SS-DNA. Anti-bacterial investigation revealed 2 to be generally the most potent, especially against Sa and Ab, i.e. having the lowest MIC values (≤0.25 μg/mL) compared to the standard anti-biotics vancomycin-HCl (MIC = 1 μg/mL) and colistin-sulphate (MIC = 0.25 μg/mL). Similarly, the anti-fungal profile shows 2 exhibits 100% inhibition against Ca and Cn fungal strains and has MIC values (≤0.25 μg/mL) comparatively lower than standard drug fluconazole (0.125 and 8 μg/mL for Ca and Cn, respectively). Compound 2 has the greatest activity with CC50 ≤ 25 μg/mL and HC50 > 32 μg/mL performed against HEC239 and RBC cell lines. The anti-cancer potential was assessed against the MG-U87 cell line, using cisplatin as the standard (133 µM), indicates 2 displays the greatest activity (IC50: 5.521 µM) at a 5 µM dose. The greatest anti-leishmanial potential was observed for 2 (87.75 at 1000 μg/mL) in comparison to amphotericin B (90.67). The biological assay correlates with the observed maximum of 89% scavenging activity exhibited by 2. The Swiss-ADME data publicised the screened compounds generally follow the rule of 5 of drug-likeness and have good bioavailability potential.
Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia.