This study aims to demonstrate the feasibility of metamaterial application in absorption reduction of 5G electromagnetic (EM) energy in the human head tissue. In a general sense, the radio frequency (RF) energy that received by wireless mobile phone from the base station, will emit to surrounding when the devices are in active mode. Since the latest fifth generation technology standard for cellular networks is upon us, the emission of radiation from any wireless devices needs to be taken into consideration. This motivation helps to prepare this paper that focuses on construction of novel and compact square-shaped metamaterial (SM) design to reduce electromagnetic exposure to humans. The commercially available substrate material known as FR-4 with thickness of 1.6 mm was selected to place the metamaterial design on it. The electromagnetic properties and Specific Absorption Rate (SAR) analyses were carried out numerically by utilising high-performance 3D EM analysis, Computer Simulation Technology Studio (CST) software. Meanwhile, for the validation purpose, the metamaterial designs for both unit and array cells were fabricated to measure the electromagnetic properties of the material. From the numerical simulation, the introduced SM design manifested quadruple resonance frequencies in multi bands precisely at 1.246 (at L-band), 3.052, 3.794 (at S-band), and 4.858 (C-band) GHz. However, the comparison of numerically simulated and measured data reveals a slight difference between them where only the second resonance frequency was decreased by 0.009 GHz while other frequencies were increased by 0.002, 0.045, and 0.117 GHz in sequential order. Moreover, the SAR analysis recorded high values at 3.794 GHz with 61.16% and 70.33% for 1 g and 10 g of tissue volumes, respectively. Overall, our results demonstrate strong SAR reduction effects, and the proposed SM design may be considered a promising aspect in the telecommunication field.
The electromagnetic properties of the metal based dielectric in the field of millimeter and sub-millimeter technology attracts a new era for innovation. In this research work, we have introduced a parallel LC shaped metamaterial resonator with wider bandwidth. The negative refractive index for two resonant frequencies is located from the negative permittivity from 5.1 to 6.3, 10.4 to 12.9 GHz, where the negative refractive index is located from 5.4 to 6.3 and 10.5 to 13.5 GHz. The electromagnetic wave polarizing in the proposed structure with parallel LC shaped metallic structure shows a fascinating response of wider bandwidth for the external electric and magnetic field. This paper focuses on the design of conducting layer for the suggested design with the parallel metallic arm for analysing the mutual coupling effect of the scattering response where the sub-branch in metallic design is shown more resonant frequencies with the enhancement of the compactness. This proposed structure is analysed with different metallic arrangements and array structures for different boundary conditions.
In this article, we present the use of a metamaterial-incorporated microwave-based sensor with a single port network for material characterization. The proposed sensor consists of a microstrip patch layer enclosed with a dual-square-shaped metamaterial split-ring. This structure has the dimensions of 20 × 20 × 1.524 mm3 and a copper metallic layer is placed on a Rogers RT 6002 with a partial back layer as a ground. Two resonant frequencies are exhibited for applied electromagnetic interaction using a transmission line. The dual split rings increase the compactness and accumulation of the electromagnetic field on the surface of the conducting layer to improve the sensitivity of the sensor. The numerical studies are carried out using a CST high-frequency microwave simulator. The validation of the proposed sensor is performed with an equivalent circuit model in ADS and numerical high-frequency simulator HFSS. The material under test placed on the proposed sensor shows good agreement with the frequency deviation for different permittivity variations. Different substrates are analyzed as a host medium of the sensor for parametric analysis.