Displaying all 3 publications

Abstract:
Sort:
  1. Siew HH
    Nihon Ishinkin Gakkai Zasshi, 2017;58(3):E107-E113.
    PMID: 28855477 DOI: 10.3314/mmj.17.014
    Feline sporotrichosis has been reported in Malaysia since the 1990's. Since then, studies have revealed that clinical clade D, Sporothrix schenckii sensu stricto, of a single clonal strain is the most common cause of this disease in Malaysia. The prevalence of a single clonal strain from a clinical clade was never before reported in Asia in a specific geographical niche. This raises the possibility of a process of purifying selection and subsequent clonal proliferation. While agricultural practices may serve as the selective pressure, direct causality has yet to be established. Studies into the thermo-tolerability of the Malaysian clonal strain of S. schenckii sensu stricto revealed that a small minority of clinical isolates have the capacity to grow at 37℃, while the majority displayed low susceptibility to commonly used antifungals in clinical practice, such as itraconazole (ITZ) and terbinafine (TRB). Despite unestablished breakpoints, suspected resistance (MIC > 4 mg/mL) towards amphotericin B (AMB) and fluconazole (FLC) was recorded in the isolates. This explains the often lack of clinical response in feline patients treated with recommended doses of antifungals, including ITZ. Coupled with the potential zoonotic transmission to clients and veterinarians, protracted treatment period, and subsequent cost of treatment, prognosis of feline sporotrichosis is often regarded to be poor. The use of a higher dose of ITZ has been reported, and an adoption of this high-dose treatment regime is reported in this manuscript, with complete cure achieved in cases of recalcitrant and/or unresponsive feline sporotrichosis, which would otherwise be euthanized.
  2. Kano R, Okubo M, Siew HH, Kamata H, Hasegawa A
    Mycoses, 2015 Apr;58(4):220-4.
    PMID: 25727965 DOI: 10.1111/myc.12302
    Epidemiological data on the aetiologic agents of feline sporotrichosis in Malaysia have not been reported, though human sporotrichosis in Malaysia is reported to be transmitted primarily via cat scratch. To the best of our knowledge, the present report is the first study of the molecular epidemiology of Sporothrix schenckii isolates from cats with sporotrichosis in Malaysia. In the present work, we characterised 18 clinical isolates from cats in Malaysia based on molecular properties, including sequence analyses of the calmodulin gene and the rDNA ITS region and selective PCR of mating type (MAT) loci. In this study, isolates from feline sporotrichosis were identified as a S. schenckii sensu stricto by sequence analyses of the calmodulin gene and the internal transcribed spacer (ITS) region. Notably, phylogenetic analysis of the ITS confirmed assignment to clinical clade D (and not C) of S. schenckii sensu stricto. Therefore, clinical clade D of S. schenckii sensu stricto appeared to be the prevailing source of feline sporotrichosis in Malaysia. The ratio of MAT1-1-1:MAT1-2-1 in these Malaysian isolates was found to be 1 : 0. This result suggested that a clonal strain of S. schenckii is the prevailing causative agent of feline sporotrichosis in Malaysia.
  3. Kano R, Hsiao YH, Siew HH, Chen C, Hasegawa A, Kamata H
    Mycopathologia, 2018 Jan 16.
    PMID: 29340910 DOI: 10.1007/s11046-018-0242-0
    To clarify the terbinafine (TRF) resistance mechanism in a TRF-resistant strain of Microsporum canis, the expression of the pleiotropic drug resistance (PDR1), multidrug resistance (MDR1), MDR2 and MDR4 genes were investigated by real-time quantitative PCR (RT-qPCR) analysis, given the known interaction of the corresponding proteins with antifungals and with the efflux blocker FK506. The expression of the PDR1, MDR1, MDR2 and MDR4 genes was 2-4 times higher in the TRF-resistant strain grown in the presence of 0.14 µg/mL of TRF than in TRF-susceptible strains cultured in the absence of TRF. The TRF-resistant strain exhibited MICs of > 32 µg/mL for TRF alone; this resistance was attenuated to an MIC of 8 µg/mL in the presence of FK506, indicating that the TRF inhibitory concentration index value was
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links