OBJECTIVE: To evaluate whether continuous vs intermittent infusion of a β-lactam antibiotic (piperacillin-tazobactam or meropenem) results in decreased all-cause mortality at 90 days in critically ill patients with sepsis.
DESIGN, SETTING, AND PARTICIPANTS: An international, open-label, randomized clinical trial conducted in 104 intensive care units (ICUs) in Australia, Belgium, France, Malaysia, New Zealand, Sweden, and the United Kingdom. Recruitment occurred from March 26, 2018, to January 11, 2023, with follow-up completed on April 12, 2023. Participants were critically ill adults (≥18 years) treated with piperacillin-tazobactam or meropenem for sepsis.
INTERVENTION: Eligible patients were randomized to receive an equivalent 24-hour dose of a β-lactam antibiotic by either continuous (n = 3498) or intermittent (n = 3533) infusion for a clinician-determined duration of treatment or until ICU discharge, whichever occurred first.
MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause mortality within 90 days after randomization. Secondary outcomes were clinical cure up to 14 days after randomization; new acquisition, colonization, or infection with a multiresistant organism or Clostridioides difficile infection up to 14 days after randomization; ICU mortality; and in-hospital mortality.
RESULTS: Among 7202 randomized participants, 7031 (mean [SD] age, 59 [16] years; 2423 women [35%]) met consent requirements for inclusion in the primary analysis (97.6%). Within 90 days, 864 of 3474 patients (24.9%) assigned to receive continuous infusion had died compared with 939 of 3507 (26.8%) assigned intermittent infusion (absolute difference, -1.9% [95% CI, -4.9% to 1.1%]; odds ratio, 0.91 [95% CI, 0.81 to 1.01]; P = .08). Clinical cure was higher in the continuous vs intermittent infusion group (1930/3467 [55.7%] and 1744/3491 [50.0%], respectively; absolute difference, 5.7% [95% CI, 2.4% to 9.1%]). Other secondary outcomes were not statistically different.
CONCLUSIONS AND RELEVANCE: The observed difference in 90-day mortality between continuous vs intermittent infusions of β-lactam antibiotics did not meet statistical significance in the primary analysis. However, the confidence interval around the effect estimate includes the possibility of both no important effect and a clinically important benefit in the use of continuous infusions in this group of patients.
TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03213990.
METHODS: We performed a prospective, observational, multinational, pharmacokinetic study in 29 intensive care units from 14 countries. We collected demographic, clinical, and RRT data. We measured trough antibiotic concentrations of meropenem, piperacillin-tazobactam, and vancomycin and related them to high- and low-target trough concentrations.
RESULTS: We studied 381 patients and obtained 508 trough antibiotic concentrations. There was wide variability (4-8-fold) in antibiotic dosing regimens, RRT prescription, and estimated endogenous renal function. The overall median estimated total renal clearance (eTRCL) was 50 mL/minute (interquartile range [IQR], 35-65) and higher eTRCL was associated with lower trough concentrations for all antibiotics (P < .05). The median (IQR) trough concentration for meropenem was 12.1 mg/L (7.9-18.8), piperacillin was 78.6 mg/L (49.5-127.3), tazobactam was 9.5 mg/L (6.3-14.2), and vancomycin was 14.3 mg/L (11.6-21.8). Trough concentrations failed to meet optimal higher limits in 26%, 36%, and 72% and optimal lower limits in 4%, 4%, and 55% of patients for meropenem, piperacillin, and vancomycin, respectively.
CONCLUSIONS: In critically ill patients treated with RRT, antibiotic dosing regimens, RRT prescription, and eTRCL varied markedly and resulted in highly variable antibiotic concentrations that failed to meet therapeutic targets in many patients.