Displaying all 5 publications

Abstract:
Sort:
  1. Suresh D, Goh PS, Ismail AF, Hilal N
    Membranes (Basel), 2021 Oct 28;11(11).
    PMID: 34832061 DOI: 10.3390/membranes11110832
    Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
  2. Kalidasan V, Suresh D, Zulkifle N, Hwei YS, Kok Hoong L, Rajasuriar R, et al.
    Bioinform Biol Insights, 2024;18:11779322241234772.
    PMID: 38425413 DOI: 10.1177/11779322241234772
    D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids by oxidative deamination, producing hydrogen peroxide (H2O2) as a by-product. The generation of intracellular H2O2 may alter the redox-homeostasis mechanism of cells and increase the oxidative stress levels in tissues, associated with the pathogenesis of age-related diseases and organ decline. This study investigates the effect of DAO knockdown using clustered regularly interspaced short palindromic repeats (CRISPR) through an in silico approach on its protein-protein interactions (PPIs) and their potential roles in the process of aging. The target sequence and guide RNA of DAO were designed using the CCTop database, PPI analysis using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Reactome biological pathway, protein docking using GalaxyTongDock database, and structure analysis. The translated target sequence of DAO lies between amino acids 43 to 50. The 10 proteins that were predicted to interact with DAO are involved in peroxisome pathways such as acyl-coenzyme A oxidase 1 (ACOX1), alanine-glyoxylate and serine-pyruvate aminotransferase (AGXT), catalase (CAT), carnitine O-acetyltransferase (CRAT), glyceronephosphate O-acyltransferase (GNPAT), hydroxyacid oxidase 1 (HAO1), hydroxyacid oxidase 2 (HAO2), trans-L-3-hydroxyproline dehydratase (L3HYPDH), polyamine oxidase (PAOX), and pipecolic acid and sarcosine oxidase (PIPOX). In summary, DAO mutation would most likely reduce activity with its interacting proteins that generate H2O2. However, DAO mutation may result in peroxisomal disorders, and thus, alternative techniques should be considered for an in vivo approach.
  3. Yap SH, Lee CS, Zulkifli ND, Suresh D, Hamase K, Das KT, et al.
    Amino Acids, 2024 Feb 03;56(1):6.
    PMID: 38310167 DOI: 10.1007/s00726-023-03360-8
    Studies in vivo have demonstrated that the accumulation of D-amino acids (D-AAs) is associated with age-related diseases and increased immune activation. However, the underlying mechanism(s) of these observations are not well defined. The metabolism of D-AAs by D-amino oxidase (DAO) produces hydrogen peroxide (H2O2), a reactive oxygen species involved in several physiological processes including immune response, cell differentiation, and proliferation. Excessive levels of H2O2 contribute to oxidative stress and eventual cell death, a characteristic of age-related pathology. Here, we explored the molecular mechanisms of D-serine (D-Ser) and D-alanine (D-Ala) in human liver cancer cells, HepG2, with a focus on the production of H2O2 the downstream secretion of pro-inflammatory cytokine and chemokine, and subsequent cell death. In HepG2 cells, we demonstrated that D-Ser decreased H2O2 production and induced concentration-dependent depolarization of mitochondrial membrane potential (MMP). This was associated with the upregulation of activated NF-кB, pro-inflammatory cytokine, TNF-α, and chemokine, IL-8 secretion, and subsequent apoptosis. Conversely, D-Ala-treated cells induced H2O2 production, and were also accompanied by the upregulation of activated NF-кB, TNF-α, and IL-8, but did not cause significant apoptosis. The present study confirms the role of both D-Ser and D-Ala in inducing inflammatory responses, but each via unique activation pathways. This response was associated with apoptotic cell death only with D-Ser. Further research is required to gain a better understanding of the mechanisms underlying D-AA-induced inflammation and its downstream consequences, especially in the context of aging given the wide detection of these entities in systemic circulation.
  4. Shaw P, Senthilnathan R, Krishnan S, Suresh D, Shetty S, Muthukaliannan GK, et al.
    Cancers (Basel), 2021 Aug 29;13(17).
    PMID: 34503179 DOI: 10.3390/cancers13174369
    Background: Nasopharyngeal carcinoma (NPC), a relatively uncommon malignancy in the Western world, is highly prevalent in Southeast Asia where the treatment outcomes are poor. Despite recent improvements in diagnosis and treatment locoregional control, distant metastasis and chemoresistance continue to be a significant cause of mortality. Identification of a reliable and comprehensive prognostic biomarker is highly desirable. The potential relevance of microRNAs (miRNAs) as prognostic markers in NPC is assessed in this systematic review and meta-analysis. Methods: A systematic review was performed using the PubMed and Science Direct databases. The search was limited to search results between 2018 and 2020 with the keywords and search strings developed as per the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. The recovered articles were carefully screened based on the selection criteria. In the meta-analysis study, high and low expression levels of miRNAs were measured using the hazard ratio (HR) and 95 percent confidence interval (CI) for patients' survival outcomes. Egger's bias indicator test and funnel plot symmetry were used to assess the risk of bias. Results: Amongst the 25 studies, 13 fulfilled the conditions of inclusion in this meta-analysis. The researchers further delved into the 21 miRNA expression levels from 3015 NPC patients to ascertain a link between miRNA's predictive role and survival outcomes. The majority of the articles retrieved during this study were from China, with two studies from Canada and Malaysia. The overall pooled effect size estimation (HR) for dysregulated miRNAs was 1.590 (95% CI: 1.253-2.017), displaying that miRNA marker expression increased the risk of mortality in NPC patients by 59%. Conclusions: This meta-analysis is novel and looks at the prognostic significance of miRNAs as biomarkers in NPC patients using a continuous version pooled meta-analysis. Although our findings are ambiguous, they do show that greater miRNA expression in NPC may be associated with a lower overall survival rate. To acquire clear conclusions, more prospective studies with large cohorts are required to determine the clinical utility of miRNAs as prognostic biomarkers.
  5. Shaw P, Raymond G, Senthilnathan R, Kumarasamy C, Baxi S, Suresh D, et al.
    Genes (Basel), 2021 Dec 20;12(12).
    PMID: 34946979 DOI: 10.3390/genes12122029
    Background: The microRNAs (miRNAs) are small noncoding single-stranded RNAs typically 19-25 nucleotides long and regulated by cellular and epigenetic factors. These miRNAs plays important part in several pathways necessary for cancer development, an altered miRNA expression can be oncogenic or tumor-suppressive. Recent experimental results on miRNA have illuminated a different perspective of the molecular pathogenesis of head and neck cancers. Regulation of miRNA can have a detrimental effect on the efficacy of chemotherapeutic drugs in both neoadjuvant and adjuvant settings. This miRNA-induced chemoresistance can influence the prognosis and survival rate. The focus of the study is on how regulations of various miRNA levels contribute to chemoresistance in head and neck cancer (HNC). Recent findings suggest that up or down-regulation of miRNAs may lead to resistance towards various chemotherapeutic drugs, which may influence the prognosis. Methods: Studies on miRNA-specific chemoresistance in HNC were collected through literary (bibliographic) databases, including SCOPUS, PubMed, Nature, Elsevier, etc., and were systematically reviewed following PRISMA-P guidelines (Preferred Reporting Items for Systematic Review and Meta-analysis Protocol). We evaluated various miRNAs, their up and downregulation, the effect of altered regulation on the patient's prognosis, resistant cell lines, etc. The data evaluated will be represented in the form of a review and meta-analysis. Discussion: This meta-analysis aims to explore the miRNA-induced chemoresistance in HNC and thus to aid further researches on this topic. PROSPERO registration: CRD42018104657.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links