Currently, pultruded glass fibre-reinforced polymer (pGFRP) composites have been extensively applied as cross-arm structures in latticed transmission towers. These materials were chosen for their high strength-to-weight ratio and lightweight characteristics. Nevertheless, several researchers have discovered that several existing composite cross arms can decline in performance, which leads to composite failure due to creep, torsional movement, buckling, moisture, significant temperature change, and other environmental factors. This leads to the composite structure experiencing a reduced service life. To resolve this problem, several researchers have proposed to implement composite cross arms with sleeve installation, an addition of bracing systems, and the inclusion of pGFRP composite beams with the core structure in order to have a sustainable composite structure. The aforementioned improvements in these composite structures provide superior performance under mechanical duress by having better stiffness, superiority in flexural behaviour, enhanced energy absorption, and improved load-carrying capacity. Even though there is a deficiency in the previous literature on this matter, several established works on the enhancement of composite cross-arm structures and beams have been applied. Thus, this review articles delivers on a state-of-the-art review on the design improvement and mechanical properties of composite cross-arm structures in experimental and computational simulation approaches.
This research study is performed on the self-compacting geopolymer concrete (SCGC) combining coal bottom ash (CBA) and metakaolin (MK) as a substitution for GGBFS alone and combined for analysing the fresh properties (slump flow, V-Funnel, and T50 flow), mechanical characteristics (compressive, splitting tensile and flexural strengths) and durability tests (permeability and sulfate attack test). Though, total 195 SCGC samples were made and tested for 28 days. It has been revealed that the consumption of CBA and MK as a substitution for GGBFS alone and combine in the production of SCGC is decreased the workability of SCGC while mechanical characteristics of SCGC are enhanced by utilizing CBA and MK as a substitution for GGBFS alone and combine up to 10%. In addition, the compressive, splitting tensile and flexural strengths were calculated by 59.40 MPa, 5.68 MPa, and 6.12 MPa while using the 5CBA5MK as a substitution for GGBFS in the production of SCGC after 28 days correspondingly. Furthermore, the permeability is decreased by growing the quantity of CBA and MK by the weight of GGBFS alone and jointly in the production of SCGC after 28 days. Besides, the minimum change in length of the SCGC specimen is recorded by 0.062 mm at 7.5MK7.5CBA while the maximum change in length is calculated by 0.11 mm at 10CBA10MK as a substitution for GGBFS at 180 days correspondingly. In addition, the embodied carbon is recorded reduce as the addition of CBA while it is getting higher when the accumulation of MK alone or combined with CBA in SCGC. Besides, response models for prediction were constructed and confirmed using ANOVA at an accuracy rate of 95%. The models' R2 fluctuated from 88 to 99%. It has been observed that the utilization of CBA and MK alone and together up to 10% as substitution for GGBFS in geopolymer concrete provides the best results therefore it is suggested for structural applications.
The concrete-filled double skin steel tube (CFDST) is a more viable option compared to a concrete-filled steel tube (CFST) due to consisting a hollow section, while degradation is enhanced simply by using carbon fiber-reinforced polymer (CFRP). Hence, the stabilization of a concrete's ductile strength needs high- performance fiber-reinforced cementitious conmposite. This study investigates the behavior of high-performance fiber-reinforced cementitious composite-filled double-skin steel tube (HPCFDST) beams strengthened longitudinally with various layers, lengths, and configurtion of CFRP sheets. The findings showed that, with increased CFRP layers, the moment capacity and flexural stiffness values of the retrofitted HPCFDST beams have significantly improved. For an instant, the moment capacity of HPCFDST beams improved by approximately 28.5% and 32.6% when they were wrapped partially along 100% with two and three layers, respectively, compared to the control beam. Moreover, the moment capacity of the HPCFDST beam using two partial layers of CFRP along 75% of its sufficient length was closed to the findings of the beam with two full CFRP layers. For energy absorption, the results showed a vast disparity. Only the two layers with a 100% full length and partial wrapping showed increasing performance over the control. Furthermore, the typical failure mode of HPCFDST beams was observed to be local buckling at the top surface near the point of loading and CFRP rapture at the bottom of effect length.
This paper presents an experimental and numerical investigation of pultruded composite glass fibre-reinforced polymer (pGFRP) cross-arms subjected to flexural creep behaviour to assess their performance and sustainability in composite cross-arm structure applications. The primary objective of this study was to investigate the failure creep behaviour of pGFRP cross-arms with different stacking sequences. Specifically, the study aimed to understand the variations in strain rate exhibited during different stages of the creep process. Therefore, this study emphasizes a simplified approach within the experiment, numerical analysis, and mathematical modelling of three different pGFRP composites to estimate the stiffness reduction factors that determine the prediction of failure. The findings show that Findley's power law and the Burger model projected very different strains and diverged noticeably outside the testing period. Findley's model estimated a minimal increase in total strain over 50 years, while the Burger model anticipated PS-1 and PS-2 composites would fail within about 11 and 33 years, respectively. The Burger model's forecasts might be more reasonable due to the harsh environment the cross-arms are expected to withstand. The endurance and long-term performance of composite materials used in overhead power transmission lines may be predicted mathematically, and this insight into material property factors can help with design and maintenance.
The versatility of polymeric materials as healing agents to prevent any structure failure and their ability to restore their initial mechanical properties has attracted interest from many researchers. Various applications of the self-healing polymeric materials are explored in this paper. The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites. This paper also presents the different types of self-healing polymeric materials applied in various applications, which include electronics, coating, aerospace, medicals, and construction fields. It is expected that this review gives a significantly broader idea of self-healing polymeric materials and their healing mechanisms in various types of applications.
The potassium (K) and sodium (Na) elements in banana are needed for hydration reaction that can enhance the strength properties of concrete. This research aims (a) to determine the material engineering properties of banana skin ash (BSA) and concrete containing BSA, (b) to measure the strength enhancement of concrete due to BSA, and (c) to identify optimal application of BSA as supplementary cement materials (SCM) in concrete. The BSA characterization were assessed through X-ray fluorescence (XRF) and Blaine's air permeability. The workability, compressive strength, and microstructures of concrete containing BSA were analysed using slump test, universal testing machine (UTM) and scanning electron microscope (SEM). A total of 15 oxides and 19 non-oxides elements were identified in BSA with K (43.1%) the highest and Na was not detected. At 20 g of mass, the BSA had a higher bulk density (198.43 ± 0.00 cm3) than ordinary Portland cement (OPC) (36.32 ± 0.00 cm3) indicating availability of large surface area for water absorption. The concrete workability was reduced with the presence of BSA (0% BSA: > 100 mm, 1% BSA: 19 ± 1.0 mm, 2%: 15 ± 0.0 mm, 3% BSA: 10 ± 0.0 mm). The compressive strength increased with the number of curing days. The concrete microstructures were improved; interfacial transition zones (ITZ) decreased with an increase of BSA. The optimal percentage of BSA obtained was at 1.25%. The established model showed significant model terms (Sum of Squares = 260.60, F value = 69.84) with probability of 0.01% for the F-value to occur due to noise. The established model is useful for application in construction industries.