Displaying all 3 publications

Abstract:
Sort:
  1. Amin NAS, Talebian-Kiakalaieh A
    Waste Manag, 2018 Mar;73:256-264.
    PMID: 29150259 DOI: 10.1016/j.wasman.2017.11.019
    As the world's second largest palm oil producer and exporter, Malaysia could capitalize on its oil palm biomass waste for power generation. The emission factors from this renewable energy source are far lower than that of fossil fuels. This study applies an integrated carbon accounting and mitigation (INCAM) model to calculate the amount of CO2 emissions from two biomass thermal power plants. The CO2 emissions released from biomass plants utilizing empty fruit bunch (EFB) and palm oil mill effluent (POME), as alternative fuels for powering steam and gas turbines, were determined using the INCAM model. Each section emitting CO2 in the power plant, known as the carbon accounting center (CAC), was measured for its carbon profile (CP) and carbon index (CI). The carbon performance indicator (CPI) included electricity, fuel and water consumption, solid waste and waste-water generation. The carbon emission index (CEI) and carbon emission profile (CEP), based on the total monthly carbon production, were determined across the CPI. Various innovative strategies resulted in a 20%-90% reduction of CO2 emissions. The implementation of reduction strategies significantly reduced the CO2 emission levels. Based on the model, utilization of EFB and POME in the facilities could significantly reduce the CO2 emissions and increase the potential for waste to energy initiatives.
  2. Jaliliannosrati H, Amin NA, Talebian-Kiakalaieh A, Noshadi I
    Bioresour Technol, 2013 May;136:565-73.
    PMID: 23567732 DOI: 10.1016/j.biortech.2013.02.078
    The synthesis of fatty acid ethyl esters (FAEEs) by a two-step in situ (reactive) esterification/transesterification from Jatropha curcas L. (JCL) seeds using microwave system has been investigated. Free fatty acid was reduced from 14% to less than 1% in the first step using H2SO4 as acid catalyst after 35 min of microwave irradiation heating. The organic phase in the first step was subjected to a second reaction by adding 5 N KOH in ethanol as the basic catalyst. Response surface methodology (RSM) based on central composite design (CCD) was utilized to design the experiments and analyze the influence of process variables (particles seed size, time of irradiation, agitation speed and catalyst loading) on conversion of triglycerides (TGs) in the second step. The highest triglycerides conversion to fatty acid ethyl esters (FAEEs) was 97.29% at the optimum conditions:<0.5mm seed size, 12.21 min irradiation time, 8.15 ml KOH catalyst loading and 331.52 rpm agitation speed in the 110 W microwave power system.
  3. Talebian-Kiakalaieh A, Amin NAS, Najaafi N, Tarighi S
    Front Chem, 2018;6:573.
    PMID: 30534550 DOI: 10.3389/fchem.2018.00573
    The last 20 years have seen an unprecedented breakthrough in the biodiesel industry worldwide leads to abundance of glycerol. Therefore, the economic utilization of glycerol to various value-added chemicals is vital for the sustainability of the biodiesel industry. One of the promising processes is acetalization of glycerol to acetals and ketals for applications as fuel additives. These products could be obtained by acid-catalyzed reaction of glycerol with aldehydes and ketones. Application of different supported heterogeneous catalysts such as zeolites, heteropoly acids, metal-based and acid-exchange resins have been evaluated comprehensively in this field. In this review, the glycerol acetalization has been reported, focusing on innovative and potential technologies for sustainable production of solketal. In addition, the impacts of various parameters such as application of different reactants, reaction temperature, water removal, utilization of crude-glycerol on catalytic activity in both batch and continuous processes are discussed. The outcomes of this research will therefore significantly improve the technology required in tomorrow's bio-refineries. This review provides spectacular opportunities for us to use such renewables and will consequently benefit the industry, environment and economy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links