Displaying publications 1 - 20 of 140 in total

Abstract:
Sort:
  1. Tan CH, Wong KY, Huang LK, Tan KY, Tan NH, Wu WG
    Toxins (Basel), 2022 Dec 07;14(12).
    PMID: 36548757 DOI: 10.3390/toxins14120860
    Naja nivea (Cape Cobra) is endemic to southern Africa. Envenoming by N. nivea is neurotoxic, resulting in fatal paralysis. Its venom composition, however, has not been studied in depth, and specific antivenoms against it remain limited in supply. Applying a protein decomplexation approach, this study unveiled the venom proteome of N. nivea from South Africa. The major components in the venom are cytotoxins/cardiotoxins (~75.6% of total venom proteins) and alpha-neurotoxins (~7.4%), which belong to the three-finger toxin family. Intriguingly, phospholipase A2 (PLA2) was undetected-this is a unique venom phenotype increasingly recognized in the African cobras of the Uraeus subgenus. The work further showed that VINS African Polyvalent Antivenom (VAPAV) exhibited cross-reactivity toward the venom and immunorecognized its toxin fractions. In mice, VAPAV was moderately efficacious in cross-neutralizing the venom lethality with a potency of 0.51 mg/mL (amount of venom completely neutralized per milliliter of antivenom). In the challenge-rescue model, VAPAV prevented death in 75% of experimentally envenomed mice, with slow recovery from neurotoxicity up to 24 h. The finding suggests the potential para-specific utility of VAPAV for N. nivea envenoming, although a higher dose or repeated administration of the antivenom may be required to fully reverse the neurotoxic effect of the venom.
  2. Oh AMF, Tan KY, Tan NH, Tan CH
    PMID: 33910092 DOI: 10.1016/j.cbpc.2021.109063
    The Many-banded Krait (Bungarus multicinctus) is a medically important venomous snake in East Asia. This study investigated the venom proteomes of B. multicinctus from Guangdong, southern China (BM-China) and insular Taiwan (BM-Taiwan), and the neutralization activities of two antivenom products (produced separately in China and Taiwan) against the lethal effect of the venoms. The venom proteomes of both specimens contained similar toxin families, notwithstanding small variations in the subtypes and abundances of minor components. More than 90% of the total venom proteins belong to three-finger toxins (3FTx, including alpha-neurotoxins) and phospholipases A2 (PLA2, including beta-bungarotoxins), supporting their key involvement in the pathophysiology of krait envenomation which manifests as pre- and post-synaptic neurotoxicity. The venoms exhibited potent neurotoxic and lethal effects with extremely low i.v. LD50 of 0.027 μg/g (Bm-China) and 0.087 μg/g (Bm-Taiwan), respectively, in mice. Bungarus multicinctus monovalent antivenom (BMMAV) produced in China and Neuro bivalent antivenom (NBAV) produced in Taiwan were immunoreactive toward both venoms and their toxin fractions. The antivenoms neutralized the venom lethality variably, with BMMAV being more efficacious than NBAV by approximately two-fold. Findings suggest that the monovalent antivenom has a higher potency presumably due to its species-specificity toward the krait venom.
  3. Faisal T, Tan KY, Tan NH, Sim SM, Gnanathasan CA, Tan CH
    J Venom Anim Toxins Incl Trop Dis, 2021 Apr 30;27:e20200177.
    PMID: 33995514 DOI: 10.1590/1678-9199-JVATITD-2020-0177
    BACKGROUND: The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity.

    METHODS: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol.

    RESULTS: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately.

    CONCLUSION: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.

  4. Wong KY, Tan KY, Tan NH, Tan CH
    Toxins (Basel), 2021 01 14;13(1).
    PMID: 33466660 DOI: 10.3390/toxins13010060
    The Senegalese cobra, Naja senegalensis, is a non-spitting cobra species newly erected from the Naja haje complex. Naja senegalensis causes neurotoxic envenomation in Western Africa but its venom properties remain underexplored. Applying a protein decomplexation proteomic approach, this study unveiled the unique complexity of the venom composition. Three-finger toxins constituted the major component, accounting for 75.91% of total venom proteins. Of these, cardiotoxin/cytotoxin (~53%) and alpha-neurotoxins (~23%) predominated in the venom proteome. Phospholipase A2, however, was not present in the venom, suggesting a unique snake venom phenotype found in this species. The venom, despite the absence of PLA2, is highly lethal with an intravenous LD50 of 0.39 µg/g in mice, consistent with the high abundance of alpha-neurotoxins (predominating long neurotoxins) in the venom. The hetero-specific VINS African Polyvalent Antivenom (VAPAV) was immunoreactive to the venom, implying conserved protein antigenicity in the venoms of N. senegalensis and N. haje. Furthermore, VAPAV was able to cross-neutralize the lethal effect of N. senegalensis venom but the potency was limited (0.59 mg venom completely neutralized per mL antivenom, or ~82 LD50 per ml of antivenom). The efficacy of antivenom should be further improved to optimize the treatment of cobra bite envenomation in Africa.
  5. Tan CH, Liew JL, Chong HP, Tan NH
    Biologicals, 2021 Jan;69:22-29.
    PMID: 33431232 DOI: 10.1016/j.biologicals.2020.12.004
    The quality of antivenom is governed by its safety and efficacy profiles. These quality characteristics are much influenced by the purity of antivenom content. Rigorous assessment and meticulous monitoring of antivenom purity at the preclinical setting is hence crucial. This study aimed to explore an integrative proteomic method to assess the physicochemical purity of four commercially available antivenoms in the region. The antivenoms were subjected to Superdex 200 HR 10/30 size-exclusion fast-protein liquid chromatography (SE-FPLC). The proteins in each fraction were trypsin-digested and analyzed by nano-ESI-liquid chromatography-tandem mass spectrometry (LC-MS/MS). SE-FPLC resolved the antivenom proteins into three major protein components of very high (>200 kDa), high (100-120 kDa) and medium (<60 kDa) molecular weights. The major components (80-95% of total proteins) in the antivenoms were proteins of 100-120 kDa consisting of mainly the light and partially digested heavy immunoglobulin chains, consistent with F(ab')2 as the active principle of the antivenoms. However, LC-MS/MS also detected substantial quantity of large proteins (e.g. alpha-2-macroglobulins), immunoglobulin aggregates and impurities e.g. albumins in some products. The method is practical and able to unveil the quantitative and qualitative aspects of antivenom protein compositions. It is therefore a potentially useful preclinical assessment tool of antivenom purity.
  6. Tan KY, Wong KY, Tan NH, Tan CH
    Int J Biol Macromol, 2020 Apr 24.
    PMID: 32339578 DOI: 10.1016/j.ijbiomac.2020.04.173
    Envenomation by Naja annulifera (snouted cobra), a non-spitting African cobra, can result in local tissue damage and fatal paralysis but a species-specific antivenom treatment is currently lacking. In this study, we investigated the quantitative proteome of N. annulifera venom, incorporating HPLC and LC-MS/MS to elucidate the venom toxicity. The immunoreactivities and in vivo neutralization activities of two hetero-specific antivenom products (Premium Serums Pan Africa polyvalent antivenom, PANAF and VINS African polyvalent antivenom, VAPAV) against the venom were subsequently examined. N. annulifera venom comprises 10 toxin families, with three-finger toxin (3FTx) being the most abundantly expressed (~78%). Within 3FTx, cytotoxin is the most dominant form and made up three-quarter of the venom bulk (~74%), whereas alpha-neurotoxins constitute <4% of the total venom proteins. Phospholipase A2 was undetected in the venom proteome, consistent with the unusual absence of PLA2 from the venoms of cobras in the Uraeus subgenus. In ELISA, PANAF and VAPAV showed comparable immunoreactivity toward the protein antigens of N. annulifera venom. These antivenoms, despite being raised against hetero-specific venoms, were capable of cross-neutralizing the lethal effect of N. annulifera venom in mice, with PANAF being marginally more potent.
  7. Tan KY, Ng TS, Bourges A, Ismail AK, Maharani T, Khomvilai S, et al.
    Acta Trop, 2020 Mar;203:105311.
    PMID: 31862461 DOI: 10.1016/j.actatropica.2019.105311
    The wide distribution of king cobra (Ophiophagus hannah), a medically important venomous snake in Asia could be associated with geographical variation in the toxicity and antigenicity of the venom. This study investigated the lethality of king cobra venoms (KCV) from four geographical locales (Malaysia, Thailand, Indonesia, China), and the immunological binding as well as in vivo neutralization activities of three antivenom products (Thai Ophiophagus hannah monovalent antivenom, OHMAV; Indonesian Serum Anti Bisa Ular, SABU; Chinese Naja atra monovalent antivenom, NAMAV) toward the venoms. The Indonesian and Chinese KCV were more lethal (median lethal dose, LD50 ~0.5 μg/g) than those from Malaysia and Thailand (LD50 ~1.0 μg/g). The antivenoms, composed of F(ab)'2, were variably immunoreactive toward the KCV from all locales, with OHMAV exhibited the highest immunological binding activity. In mice, OHMAV neutralized the neurotoxic lethality of Thai KCV most effectively (normalized potency = 118 mg venom neutralized per g antivenom) followed by Malaysian, Indonesian and Chinese KCV. In comparison, the hetero-specific SABU was remarkably less potent by at least 6 to10 folds, whereas NAMAV appeared to be non-effective. The finding supports that a specific king cobra antivenom is needed for the effective treatment of king cobra envenomation in each region.
  8. Tan CH, Liew JL, Navanesan S, Sim KS, Tan NH, Tan KY
    PMID: 32742279 DOI: 10.1590/1678-9199-JVATITD-2020-0013
    Background: The Asiatic pit vipers from the Trimeresurus complex are medically important venomous snakes. These pit vipers are often associated with snakebite that leads to fatal coagulopathy and tissue necrosis. The cytotoxic venoms of Trimeresurus spp.; however, hold great potential for the development of peptide-based anticancer drugs.

    Methods: This study investigated the cytotoxic effect of the venom from Trimeresurus purpureomaculatus, the mangrove pit viper (also known as shore pit viper) which is native in Malaysia, across a panel of human cancer cell lines from breast, lung, colon and prostate as well as the corresponding normal cell lines of each tissue.

    Results: The venom exhibited dose-dependent cytotoxic activities on all cell lines tested, with median inhibition concentrations (IC50) ranging from 0.42 to 6.98 µg/mL. The venom has a high selectivity index (SI = 14.54) on breast cancer cell line (MCF7), indicating that it is significantly more cytotoxic toward the cancer than to normal cell lines. Furthermore, the venom was fractionated using C18 reversed-phase high-performance liquid chromatography and the anticancer effect of each protein fraction was examined. Fraction 1 that contains a hydrophilic low molecular weight (approximately 7.5 kDa) protein was found to be the most cytotoxic and selective toward the breast cancer cell line (MCF7). The protein was identified using liquid chromatography-tandem mass spectrometry as a venom disintegrin, termed purpureomaculin in this study.

    Conclusion: Taken together, the findings revealed the potent and selective cytotoxicity of a disintegrin protein isolated from the Malaysian T. purpureomaculatus venom and suggested its anticancer potential in drug discovery.

  9. Kong BH, Teoh KH, Tan NH, Tan CS, Ng ST, Fung SY
    PeerJ, 2020;8:e9650.
    PMID: 32832273 DOI: 10.7717/peerj.9650
    Background: Lignosus tigris, a recently discovered species of the unique Lignosus family, has been traditionally used by the indigenous communities in Peninsular Malaysia to treat various ailments and as an alternative medicine for cancer treatment. The L. tigris cultivar sclerotia (Ligno TG-K) was found to contain numerous bioactive compounds with beneficial biomedicinal properties and the sclerotial extract exhibited potent antioxidant activity. However, the anticancer property of the Ligno TG-K including in vitro and in vivo antitumor effects as well as its anticancer active compounds and the mechanisms has yet to be investigated.

    Methods: The cytotoxicity of the Ligno TG-K against human breast (MCF7), prostate (PC3) and lung (A549) adenocarcinoma cell lines was evaluated using MTT cytotoxicity assay. The cytotoxic mechanisms of the active high molecular weight proteins (HMWp) fraction were investigated through detection of caspases activity and apoptotic-related proteins expression by Western blotting. The in vivo antitumor activity of the isolated HMWp was examined using MCF7 mouse xenograft model. Shotgun LC-MS/MS analysis was performed to identify the proteins in the HMWp.

    Results and Discussion: Cold water extract of the sclerotia inhibited proliferation of MCF7, A549 and PC3 cells with IC50 ranged from 28.9 to 95.0 µg/mL. Bioassay guided fractionation of the extract revealed that HMWp exhibited selective cytotoxicity against MCF7 cells via induction of cellular apoptosis by the activation of extrinsic and intrinsic signaling pathways. HMWp activated expression of caspase-8 and -9 enzymes, and pro-apoptotic Bax protein whilst inhibiting expression of tumor survivor protein, Bcl-2. HMWp induced tumor-cell apoptosis and suppressed growth of tumor in MCF-7 xenograft mice. Lectins, serine proteases, RNase Gf29 and a 230NA deoxyribonuclease are the major cytotoxic proteins that accounted for 55.93% of the HMWp.

    Conclusion: The findings from this study provided scientific evidences to support the traditional use of the L. tigris sclerotia for treatment of breast cancer. Several cytotoxic proteins with high abundance have been identified in the HMWp of the sclerotial extract and these proteins have potential to be developed into new anticancer agents or as adjunct cancer therapy.

  10. Cheong PCH, Yong YS, Fatima A, Ng ST, Tan CS, Kong BH, et al.
    IUBMB Life, 2019 10;71(10):1579-1594.
    PMID: 31190445 DOI: 10.1002/iub.2101
    A lectin gene from the Tiger Milk Mushroom Lignosus rhinocerus TM02® was successfully cloned and expressed via vector pET28a in Escherichia coli BL21(DE3). The recombinant lectin, Rhinocelectin, with a predicted molecular mass of 22.8 kDa, was overexpressed in water-soluble form without signal peptide and purified via native affinity chromatography Ni-NTA agarose. Blast protein analysis indicated the lectin to be homologous to jacalin-related plant lectin. In its native form, Rhinocelectin exists as a homo-tetramer predicted with four chains of identical proteins consisting of 11 beta-sheet structures with only one alpha-helix structure. The antiproliferative activity of the Rhinocelectin against human cancer cell lines was concentration dependent and selective. The IC50 values against triple negative breast cancer cell lines MDA-MB-231 and breast cancer MCF-7 are 36.52 ± 13.55 μg mL-1 and 53.11 ± 22.30 μg mL-1 , respectively. Rhinocelectin is only mildly cytotoxic against the corresponding human nontumorigenic breast cell line 184B5 with IC50 value at 142.19 ± 36.34 μg mL-1 . The IC50 against human lung cancer cell line A549 cells is 46.14 ± 7.42 μg mL-1 while against nontumorigenic lung cell line NL20 is 41.33 ± 7.43 μg mL-1 . The standard anticancer drug, Doxorubicin exhibited IC50 values mostly below 1 μg mL-1 for the cell lines tested. Flow cytometry analysis showed the treated breast cancer cells were arrested at G0/G1 phase and apoptosis induced. Rhinocelectin agglutinated rat and rabbit erythrocytes at a minimal concentration of 3.125 μg mL-1 and 6.250 μg mL-1 , respectively.
  11. Tan CH, Wong KY, Chong HP, Tan NH, Tan KY
    J Proteomics, 2019 08 30;206:103418.
    PMID: 31201947 DOI: 10.1016/j.jprot.2019.103418
    The Philippine cobra, Naja philippinensis, is a WHO Category 1 venomous snake of medical importance responsible for fatal envenomation in the northern Philippines. To elucidate the venom proteome and pathophysiology of envenomation, N. philippinensis venom proteins were decomplexed with reverse-phase high-performance liquid chromatography, and protein fractions were subsequently digested with trypsin, followed by nano-liquid chromatography-tandem mass spectrometry analysis and data mining. Three-finger toxins (3FTX, 66.64% of total venom proteins) and phospholipases A2 (PLA2, 22.88%) constitute the main bulk of venom proteome. Other proteins are present at low abundances (<4% each); these include metalloproteinase, serine protease, cobra venom factor, cysteine-rich secretory protein, vespryn, phosphodiesterase, 5' nucleotidase and nerve growth factor. In the three-finger toxin family, the alpha-neurotoxins comprise solely short neurotoxins (SNTX, 44.55%), supporting that SNTX is the principal toxin responsible for neuromuscular paralysis and lethality reported in clinical envenomation. Cytotoxins (CTX) are the second most abundant 3FTX proteins in the venom (21.31%). The presence of CTX correlates with the venom cytotoxic effect, which is more prominent in murine cells than in human cells. From the practical standpoint, SNTX-driven neuromuscular paralysis is significant in N. philippinensis envenomation. Antivenom production and treatment should be tailored accordingly to ensure effective neutralization of SNTX. BIOLOGICAL SIGNIFICANCE: The venom proteome of Naja philippinensis, the Philippine cobra, is unravelled for the first time. Approximately half the protein bulk of the venom is made up of short neurotoxins (44.55% of the total venom proteins). As the only alpha-neurotoxins present in the venom, short neurotoxins are the causative toxins of the post-synaptic blockade and fast-onset neuromuscular paralysis in N. philippinensis envenomation. A substantial amount of cytotoxins (21.31%) was also detected in N. philippinensis venom, supporting that the venom can be cytotoxic although the effect is much weaker in human cells compared to murine cells. The finding is consistent with the low incidence of local tissue necrosis in N. philippinensis envenomation, although this does not negate the need for monitoring and care of bite wound in the patients.
  12. Tang ELH, Tan NH, Fung SY, Tan CH
    Toxicon, 2019 Aug 22;169:91-102.
    PMID: 31445943 DOI: 10.1016/j.toxicon.2019.08.004
    The intraspecific geographical venom variations of Calloselasma rhodostoma from Malaysia (CR-M), Indonesia (CR-I), Thailand (CR-T) and Vietnam (CR-V) were investigated through 1D SDS-PAGE and nano-ESI-LCMS/MS. The venom antigenicity, procoagulant activities and neutralization using Thai C. rhodostoma Monovalent Antivenom (CRMAV) were also investigated. SDS-PAGE patterns of the venoms were relatively similar with minor variations. Proteomic analysis revealed that snake venom metalloproteinases (SVMPs, particularly P-I class), serine proteases (SVSPs) and snaclecs dominated the venom protein composition (68.96-81.80%), followed by L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2) (7.37-11.08% and 5.18-13.81%, respectively), corroborating C. rhodostoma envenoming effects (hemorrhage, consumptive coagulopathy, thrombocytopenia and local tissue necrosis). Other proteins of lower abundances (2.82-9.13%) identified include cysteine-rich secretory proteins (CRISP), phospholipase B, phosphodiesterase, nerve growth factor, 5'-nucleotidase, aminopeptidase and hyaluronidase. All four venoms exhibited strong procoagulant effects which were neutralized by CRMAV to different extents. CRMAV immunoreactivity was high toward venoms of CR-M, CR-I and CR-T but relatively low for CR-V venom. Among the venom samples from different locales, CR-V venom proteome has the smallest SVMP composition while SVSP, PLA2 and phosphodiesterase were more abundant in the venom. These variations in C. rhodostoma venom protein composition could partly explain the differences seen in immunoreactivity. (198 words).
  13. Fung SY, Cheong PCH, Tan NH, Ng ST, Tan CS
    IUBMB Life, 2019 07;71(7):821-826.
    PMID: 30629799 DOI: 10.1002/iub.2006
    Sclerotial powder of a cultivated species of the Tiger Milk Mushroom, Lignosus cameronensis was analysed for its nutritional components and compared against species of the same genus, Lignosus rhinocerus and Lignosus tigris. All three species have been used by indigenous tribes in Peninsular Malaysia as medicinal mushrooms. Content of carbohydrate, fibre, mineral, amino acid, palatable index, fat, ash and moisture were determined. L. cameronensis sclerotial material consists of carbohydrate (79.7%), protein (12.4%) and dietary fibre (5.4%) with low fat (1.7%) and no free sugar. It has the highest content of total carbohydrate (791 g kg-1 ), energy value (3,700 kcal kg-1 ) and calcium (0.85 g kg-1 ). The crude protein content (123 g kg-1 ) is comparable to that of L. rhinocerus with its main amino acids consisting of glutamic acid, aspartic acid and leucine. The umami index is determined to be 0.27. The total essential amino acid (45 g kg-1 ) is comparable to that of L. tigris. The main mineral is potassium (1.51 g kg-1 ) and the Na/K ratio was <0.6. Heavy metals such as mercury, cadmium, lead and arsenic were absent. L. cameronensis has the highest amount of food energy, total carbohydrate and calcium compared to those of both L. rhinocerus and L. tigris. The essential amino acids comprised almost 40% of the total amino acid content, slightly more than that reported from sclerotial powder of the L. tigris. © 2019 IUBMB Life, 9999(9999):1-6, 2019.
  14. Tan KY, Liew ST, Tan QY, Abdul-Rahman FN, Azmi NI, Sim SM, et al.
    Toxicon, 2019 Mar 15;160:55-58.
    PMID: 30797900 DOI: 10.1016/j.toxicon.2019.02.010
    Gel filtration chromatography and gel electrophoresis revealed minimal protein degradation in lyophilized antivenoms which were 2-year expired (Hemato Polyvalent, Neuro Polyvalent; Thailand) and 18-year expired (Hemato Bivalent, Neuro Bivalent; Taiwan). All expired antivenoms retained immunological binding activity, and were able to neutralize the hemotoxic or neurotoxic as well as lethal effects of the homologous snake venoms. The findings show that antivenoms under proper storage conditions may remain relatively stable beyond the indicated shelf life.
  15. Oh AMF, Tan CH, Tan KY, Quraishi NH, Tan NH
    J Proteomics, 2019 02 20;193:243-254.
    PMID: 30385415 DOI: 10.1016/j.jprot.2018.10.016
    The proteome of the Pakistani B. sindanus venom was investigated with reverse-phase HPLC and nano-ESI-LCMS/MS analysis. At least 36 distinct proteins belonging to 8 toxin protein families were identified. Three-finger toxin (3FTx), phospholipase A2 (including β-bungarotoxin A-chains) and Kunitz-type serine protease inhibitor (KSPI) were the most abundant, constituting ~95% of total venom proteins. The other toxin proteins of low abundance are snake venom metalloproteinase (SVMP), L-amino acid oxidase (LAAO), acetylcholinesterase (AChE), vespryn and cysteine-rich secretory protein (CRiSP). The venom was highly lethal to mice with LD50 values of 0.04 μg/g (intravenous) and 0.15 μg/g (subcutaneous). The 3FTx proteins are diverse, comprising kappa-neurotoxins, neurotoxin-like protein, non-conventional toxins and muscarinic toxin-like proteins. Kappa-neurotoxins and β-bungarotoxins represent the major toxins that mediate neurotoxicity in B. sindanus envenoming. Alpha-bungarotoxin, commonly present in the Southeast Asian krait venoms, was undetected. The Indian VINS Polyvalent Antivenom (VPAV) was immunoreactive toward the venom, and it moderately cross-neutralized the venom lethality (potency = 0.25 mg/ml). VPAV was able to reverse the neurotoxicity and prevent death in experimentally envenomed mice, but the recovery time was long. The unique toxin composition of B. sindanus venom may be considered in the formulation of a more effective pan-regional, polyspecific antivenom. BIOLOGICAL SIGNIFICANCE: Bungarus sindanus, an endemic krait species distributed mainly in the Sindh Province of Pakistan is a cause of snake envenomation. Its specific antivenom is, however, lacking. The proteomic study of its venom revealed a substantial presence of κ-bungarotoxins and β-bungarotoxins. The toxin profile corroborates the potent neurotoxicity and lethality of the venom tested in vivo. The heterologous Indian VINS polyvalent antivenom (VPAV) cross-reacted with B. sindanus venom and cross-neutralized the venom neurotoxicity and lethality in mice, albeit the efficacy was moderate. The findings imply that B. sindanus and the phylogenetically related B. caeruleus of India share certain venom epitopes. Research should be advanced to improve the efficacy spectrum of a pan-regional polyspecific antivenom.
  16. Tan KY, Liew JL, Tan NH, Quah ESH, Ismail AK, Tan CH
    J Proteomics, 2019 02 10;192:246-257.
    PMID: 30243938 DOI: 10.1016/j.jprot.2018.09.006
    The Asiatic coral snakes are basal in the phylogeny of coral snakes. Although envenoming by the Asiatic coral snakes is rarely fatal, little is known about their venom properties and variability from the American coral snakes. Integrating reverse-phase high performance liquid chromatography and nano-liquid chromatography-tandem mass spectrometry, we showed that the venom proteome of the Malaysian banded or striped coral snake (Calliophis intestinalis) was composed of mainly phospholipases A2 (PLA2, 43.4%) and three-finger toxins (3FTx, 20.1%). Within 3FTx, the cytotoxins or cardiotoxins (CTX) dominated while the neurotoxins' content was much lower. Its subproteomic details contrasted with the 3FTx profile of most Micrurus sp., illustrating a unique dichotomy of venom phenotype between the Old and the New World coral snakes. Calliophis intestinalis venom proteome was correlated with measured enzymatic activities, and in vivo it was myotoxic but non-lethal to mice, frogs and geckos at high doses (5-10 μg/g). The venom contains species-specific toxins with distinct sequences and antigenicity, and the antibodies raised against PLA2 and CTX of other elapids showed poor binding toward its venom antigens. The unique venom proteome of C. intestinalis unveiled a repertoire of novel toxins, and the toxicity test supported the need for post-bite monitoring of myotoxic complication. SIGNIFICANCE: Malaysian banded or striped coral snake (Calliophis intestinalis) has a cytotoxin (CTX)-predominating venom proteome, a characteristic shared by its congener, the Malayan blue coral snake (Calliophis bivirgata). With little neurotoxins (NTX), it illustrates a CTX/NTX dichotomy of venom phenotype between the Old World and the New World coral snakes. The low toxicity of the venom imply that C. intestinalis bite envenoming can be managed via symptomatic relief of the mild to moderate pain with appropriate analgesia. Systemically, the serum creatine kinase level of patients should be monitored serially for potential complication of myotoxicity. The distinct antigenicity of the venom proteins implies that the empirical use of heterologous antivenom is mostly inappropriate and not recommended.
  17. Tan CH, Tan KY, Tan NH
    Methods Mol Biol, 2019;1871:83-92.
    PMID: 30276733 DOI: 10.1007/978-1-4939-8814-3_5
    Snake venoms are complex mixtures of proteins and peptides that play vital roles in the survival of venomous snakes. As with their diverse pharmacological activities, snake venoms can be highly variable, hence the importance of understanding the compositional details of different snake venoms. However, profiling venom protein mixtures is challenging, in particular when dealing with the diversity of protein subtypes and their abundances. Here we described an optimized strategy combining a protein decomplexation method with in-solution trypsin digestion and mass spectrometry of snake venom proteins. The approach involves the integrated use of C18 reverse-phase high-performance liquid chromatography (RP-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and nano-electrospray ionization tandem mass spectrometry (nano-ESI-LC-MS/MS).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links