OBJECTIVE: This study aimed to investigate the association between vegetable and fruit intake and steroid hormone receptor-defined breast cancer risk.
DESIGN: A total of 335,054 female participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were included in this study (mean ± SD age: 50.8 ± 9.8 y). Vegetable and fruit intake was measured by country-specific questionnaires filled out at recruitment between 1992 and 2000 with the use of standardized procedures. Cox proportional hazards models were stratified by age at recruitment and study center and were adjusted for breast cancer risk factors.
RESULTS: After a median follow-up of 11.5 y (IQR: 10.1-12.3 y), 10,197 incident invasive breast cancers were diagnosed [3479 estrogen and progesterone receptor positive (ER+PR+); 1021 ER and PR negative (ER-PR-)]. Compared with the lowest quintile, the highest quintile of vegetable intake was associated with a lower risk of overall breast cancer (HRquintile 5-quintile 1: 0.87; 95% CI: 0.80, 0.94). Although the inverse association was most apparent for ER-PR- breast cancer (ER-PR-: HRquintile 5-quintile 1: 0.74; 95% CI: 0.57, 0.96; P-trend = 0.03; ER+PR+: HRquintile 5-quintile 1: 0.91; 95% CI: 0.79, 1.05; P-trend = 0.14), the test for heterogeneity by hormone receptor status was not significant (P-heterogeneity = 0.09). Fruit intake was not significantly associated with total and hormone receptor-defined breast cancer risk.
CONCLUSION: This study supports evidence that a high vegetable intake is associated with lower (mainly hormone receptor-negative) breast cancer risk.
OBJECTIVE: This study evaluated the associations of plasma carotenoid, retinol, tocopherol, and vitamin C concentrations and risk of breast cancer.
DESIGN: In a nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort, 1502 female incident breast cancer cases were included, with an oversampling of premenopausal (n = 582) and estrogen receptor-negative (ER-) cases (n = 462). Controls (n = 1502) were individually matched to cases by using incidence density sampling. Prediagnostic samples were analyzed for α-carotene, β-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, retinol, α-tocopherol, γ-tocopherol, and vitamin C. Breast cancer risk was computed according to hormone receptor status and age at diagnosis (proxy for menopausal status) by using conditional logistic regression and was further stratified by smoking status, alcohol consumption, and body mass index (BMI). All statistical tests were 2-sided.
RESULTS: In quintile 5 compared with quintile 1, α-carotene (OR: 0.61; 95% CI: 0.39, 0.98) and β-carotene (OR: 0.41; 95% CI: 0.26, 0.65) were inversely associated with risk of ER- breast tumors. The other analytes were not statistically associated with ER- breast cancer. For estrogen receptor-positive (ER+) tumors, no statistically significant associations were found. The test for heterogeneity between ER- and ER+ tumors was statistically significant only for β-carotene (P-heterogeneity = 0.03). A higher risk of breast cancer was found for retinol in relation to ER-/progesterone receptor-negative tumors (OR: 2.37; 95% CI: 1.20, 4.67; P-heterogeneity with ER+/progesterone receptor positive = 0.06). We observed no statistically significant interaction between smoking, alcohol, or BMI and all investigated plasma analytes (based on tertile distribution).
CONCLUSION: Our results indicate that higher concentrations of plasma β-carotene and α-carotene are associated with lower breast cancer risk of ER- tumors.
METHODS AND FINDINGS: We followed a cohort of 308,036 women recruited in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. At enrollment, participants completed a questionnaire and provided serum. After a 9-year median follow-up, 261 ICC and 804 CIN3/CIS cases were reported. In a nested case-control study, the sera from 609 cases and 1,218 matched controls were tested for L1 antibodies against HPV types 11,16,18,31,33,35,45,52,58, and antibodies against Chlamydia trachomatis and Human herpesvirus 2. Multivariate analyses were performed to estimate hazard ratios (HR), odds ratios (OR) and corresponding 95% confidence intervals (CI). The cohort analysis showed that number of full-term pregnancies was positively associated with CIN3/CIS risk (p-trend = 0.03). Duration of oral contraceptives use was associated with a significantly increased risk of both CIN3/CIS and ICC (HR = 1.6 and HR = 1.8 respectively for ≥ 15 years versus never use). Ever use of menopausal hormone therapy was associated with a reduced risk of ICC (HR = 0.5, 95%CI: 0.4-0.8). A non-significant reduced risk of ICC with ever use of intrauterine devices (IUD) was found in the nested case-control analysis (OR = 0.6). Analyses restricted to all cases and HPV seropositive controls yielded similar results, revealing a significant inverse association with IUD for combined CIN3/CIS and ICC (OR = 0.7).
CONCLUSIONS: Even though HPV is the necessary cause of CC, our results suggest that several hormonal factors are risk factors for cervical carcinogenesis. Adherence to current cervical cancer screening guidelines should minimize the increased risk of CC associated with these hormonal risk factors.
METHODS: This study includes 235,880 participants, 25-70 years old, recruited between 1992 and 2000 in 10 European countries. Intakes of 23 nutrients were estimated from country-specific validated dietary questionnaires using the harmonized EPIC Nutrient DataBase. Four nutrient patterns, explaining 67 % of the total variance of nutrient intakes, were previously identified from principal component analysis. Body weight was measured at recruitment and self-reported 5 years later. The relationship between nutrient patterns and annual weight change was examined separately for men and women using linear mixed models with random effect according to center controlling for confounders.
RESULTS: Mean weight gain was 460 g/year (SD 950) and 420 g/year (SD 940) for men and women, respectively. The annual differences in weight gain per one SD increase in the pattern scores were as follows: principal component (PC) 1, characterized by nutrients from plant food sources, was inversely associated with weight gain in men (-22 g/year; 95 % CI -33 to -10) and women (-18 g/year; 95 % CI -26 to -11). In contrast, PC4, characterized by protein, vitamin B2, phosphorus, and calcium, was associated with a weight gain of +41 g/year (95 % CI +2 to +80) and +88 g/year (95 % CI +36 to +140) in men and women, respectively. Associations with PC2, a pattern driven by many micro-nutrients, and with PC3, a pattern driven by vitamin D, were less consistent and/or non-significant.
CONCLUSIONS: We identified two main nutrient patterns that are associated with moderate but significant long-term differences in weight gain in adults.