Displaying all 4 publications

Abstract:
Sort:
  1. Kang TL, Chelliah S, Velappan RD, Kabir N, Mohamad J, Nor Rashid N, et al.
    Lett Appl Microbiol, 2019 Nov;69(5):366-372.
    PMID: 31508837 DOI: 10.1111/lam.13215
    We evaluate the efficacy of recombinant DNA vaccine ABA392 against haemorrhagic septicaemia infection through intranasal administration route by targeting the mucosal immunity. The DNA vaccine was constructed and subjected to animal study using the Sprague Dawley (SD) rat. The study was divided into two major parts: (i) active and (ii) passive immunization studies, involving 30 animals for each part. Each group was then divided into five test groups: two test samples G1 and G2 with 50 and 100 µg ml-1 purified DNA vaccine; one positive control G5 with 106  CFU per ml formalin-killed PMB2; and two negative controls, G3 and G4 with normal saline and pVAX1 vector. Both studies were conducted for the determination of immunogenicity by total white blood cell count (TWBC), indirect ELISA and histopathological changes for the presence of the bronchus-associated lymphoid tissue (BALT). Our findings demonstrate that TWBC, IgA and IgG increased after each of the three vaccination regimes: groups G1, G2 and G5. Test samples G1 and G2 showed significant differences (P 
  2. Kang TL, Velappan RD, Kabir N, Mohamad J, Rashid NN, Ismail S
    Microb Pathog, 2019 Mar;128:90-96.
    PMID: 30584901 DOI: 10.1016/j.micpath.2018.12.042
    Haemorrhagic septicaemia (HS) is a well-known high fatality septicaemic disease happening among bovines. The disease is caused by the Pasteurella multocida serotype B:2 bacteria. P. multocida B:2 has high mortality and morbidity rates and is spread through the intranasal and oral routes in bovines. In this study, our aim was to investigate the efficacy of the recombinant protein vaccine, ABA392/pET30a via intranasal inoculation by targeting the mucosal immunity. The constructed recombinant protein vaccine ABA392/pET30a was subjected to an animal study using Sprague Dawley rats. The study was divided into two parts: active and passive immunization studies. Both studies were carried out through the determination of immunogenicity (using Total White Blood Cell (TWBC) Count with Indirect ELISA) and histopathogenicity, analyzing (Bronchus Associated Lymphoid Tissue (BALT) formation) in lungs. As a result, the IgA and IgG development of both tested groups: group 1 (50μg/mL protein vaccine) and group 2 (100μg/mL protein vaccine) showed equivalent with the positive control group 4 (formalin-killed P. multocida B:2). However, there was a significant difference when compared with the negative control group 3 (normal saline). These results demonstrate that both the protein vaccine at the concentration 50μg/mL and 100μg/mL have the same efficacy as the commercially available positive control vaccine. From the studies, higher concentration of protein vaccine at 100μg/mL showed higher development of both IgA and IgG compared to 50μg/mL protein vaccine. Higher and rapid development of IgA compared to IgG showed that mucosal immunity has been induced through the intranasal administration of the protein vaccine. In addition, leucocytosis was observed at each dose of vaccination showed that the protein vaccine is capable to induce the immune responses of the host. Histopathogenicity studies of the vaccinated groups showed more BALT formation and no severe lesions after challenge compared to the negative control group. Besides, no inflammatory onsite or anaphylactic responses were observed after the intranasal inoculation which proved to be safer and provided longer lasting immunity. Therefore, recombinant protein vaccine ABA392/pET30a could be a potential candidate for intranasal administration which can provoke mucosal immunity against HS disease.
  3. Jamali H, Rezagholipour M, Fallah S, Dadrasnia A, Chelliah S, Velappan RD, et al.
    Vet J, 2014 Nov;202(2):381-3.
    PMID: 25201254 DOI: 10.1016/j.tvjl.2014.07.024
    The objectives of this study were to determine the prevalence, characterization and antibiotic resistance of Pasteurella multocida isolated from calves with respiratory infection in Iran. P. multocida was detected in 141/169 bovine respiratory infection cases on Iranian dairy and beef farms. P. multocida were grouped into serogroups A (126/141), D (12/141), and B (3/141). Of the P.  multocida isolates, all harboured the psl, ompH, oma87, fimA, ptfA, nanB, and nanH genes, 139/141 had hsf-2, and 115/141 pfhA, and tadD. The isolates were most frequently resistant to penicillin G (43/141 resistant isolates; 30.5%) and streptomycin (31/141; 22%).
  4. Chelliah S, Velappan RD, Lim KT, Swee CWK, Nor Rashid N, Rothan HA, et al.
    Mol Biotechnol, 2020 May;62(5):289-296.
    PMID: 32185600 DOI: 10.1007/s12033-020-00244-0
    Pasteurella multocida is the main cause of haemorrhagic septicaemia (HS) outbreak in livestock, such as cattle and buffaloes. Conventional vaccines such as alum-precipitated or oil-adjuvant broth bacterins were injected subcutaneously to provide protection against HS. However, the immunity developed is only for short term and needed to be administered frequently. In our previous study, a short gene fragment from Pasteurella multocida serotype B was obtained via shotgun cloning technique and later was cloned into bacterial expression system. pQE32-ABA392 was found to possess immunogenic activity towards HS when tested in vivo in rat model. In this study, the targeted gene fragment of ABA392 was sub-cloned into a DNA expression vector pVAX1 and named as pVAX1-ABA392. The new recombinant vaccine was stable and expressed on mammalian cell lines. Serum sample collected from a group of vaccinated rats for ELISA test shows that the antibody in immunized rats was present at high titer and can be tested as a vaccine candidate with challenge in further studies. This successful recombinant vaccine is immunogenic and potentially could be used as vaccine in future against HS.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links