Displaying all 6 publications

Abstract:
Sort:
  1. Agamuthu P, Victor D
    Waste Manag Res, 2011 Sep;29(9):945-53.
    PMID: 21771873 DOI: 10.1177/0734242X11413332
    This paper seeks to examine the provisions for extended producer responsibility (EPR) within the Malaysian environmental and waste management policies and to determine its existing practice and future prospects in Malaysia. Malaysian waste generation has been increasing drastically where solid waste generation was estimated to increase from about 9.0 million tonnes in 2000 to about 10.9 million tonnes in 2010, to about 12.8 million tonnes in 2015 and finally to about 15.6 million tonnes in 2020. Malaysian e-waste was estimated to be about 652 909 tonnes in 2006 and was estimated to increase to about 706 000 tonnes in 2010 and finally to about 1.2 million tonnes in 2020. The projected increasing generation of both solid waste and scheduled wastes is expected to burden the country's resources and environment in managing these wastes in a sustainable manner. The concept of EPR is provided for in the Malaysia waste management system via the Environmental Quality Act 1974 and the Solid Waste and Public Cleansing Management Act 2007. However, these provisions in the policy are generic in nature without relevant regulations to enable its enforcement and as such the concept of EPR still remains on paper whereas the existing practice of EPR in Malaysia is limited through voluntary participation. In conclusion, policy trends of EPR in Malaysia seem to indicate that Malaysia may be embarking on the path towards EPR through the enactment of an EPR regulation.
  2. Rosenthal VD, Richtmann R, Singh S, Apisarnthanarak A, Kübler A, Viet-Hung N, et al.
    Infect Control Hosp Epidemiol, 2013 Jun;34(6):597-604.
    PMID: 23651890 DOI: 10.1086/670626
     To report the results of a surveillance study on surgical site infections (SSIs) conducted by the International Nosocomial Infection Control Consortium (INICC).
  3. Rosenthal VD, Yin R, Abbo LM, Lee BH, Rodrigues C, Myatra SN, et al.
    Am J Infect Control, 2024 Jan;52(1):54-60.
    PMID: 37499758 DOI: 10.1016/j.ajic.2023.07.007
    BACKGROUND: Identify urinary catheter (UC)-associated urinary tract infections (CAUTI) incidence and risk factors (RF) in 235 ICUs in 8 Asian countries: India, Malaysia, Mongolia, Nepal, Pakistan, the Philippines, Thailand, and Vietnam.

    METHODS: From January 1, 2014, to February 12, 2022, we conducted a prospective cohort study. To estimate CAUTI incidence, the number of UC days was the denominator, and CAUTI was the numerator. To estimate CAUTI RFs, we analyzed 11 variables using multiple logistic regression.

    RESULTS: 84,920 patients hospitalized for 499,272 patient days acquired 869 CAUTIs. The pooled CAUTI rate per 1,000 UC-days was 3.08; for those using suprapubic-catheters (4.11); indwelling-catheters (2.65); trauma-ICU (10.55), neurologic-ICU (7.17), neurosurgical-ICU (5.28); in lower-middle-income countries (3.05); in upper-middle-income countries (1.71); at public-hospitals (5.98), at private-hospitals (3.09), at teaching-hospitals (2.04). The following variables were identified as CAUTI RFs: Age (adjusted odds ratio [aOR] = 1.01; 95% CI = 1.01-1.02; P 

  4. Rosenthal VD, Yin R, Jin Z, Perez V, Kis MA, Abdulaziz-Alkhawaja S, et al.
    Am J Infect Control, 2024 Aug;52(8):906-914.
    PMID: 38437883 DOI: 10.1016/j.ajic.2024.02.017
    BACKGROUND: Catheter-Associated Urinary Tract Infections (CAUTIs) frequently occur in the intensive care unit (ICU) and are correlated with a significant burden.

    METHODS: We implemented a strategy involving a 9-element bundle, education, surveillance of CAUTI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CAUTI rates and performance feedback. This was executed in 299 ICUs across 32 low- and middle-income countries. The dependent variable was CAUTI per 1,000 UC days, assessed at baseline and throughout the intervention, in the second month, third month, 4 to 15 months, 16 to 27 months, and 28 to 39 months. Comparisons were made using a 2-sample t test, and the exposure-outcome relationship was explored using a generalized linear mixed model with a Poisson distribution.

    RESULTS: Over the course of 978,364 patient days, 150,258 patients utilized 652,053 UC-days. The rates of CAUTI per 1,000 UC days were measured. The rates decreased from 14.89 during the baseline period to 5.51 in the second month (risk ratio [RR] = 0.37; 95% confidence interval [CI] = 0.34-0.39; P 

  5. Rosenthal VD, Jin Z, Brown EC, Dongol R, De Moros DA, Alarcon-Rua J, et al.
    Am J Infect Control, 2023 Dec 26.
    PMID: 38154739 DOI: 10.1016/j.ajic.2023.12.010
    BACKGROUND: Central line (CL)-associated bloodstream infections (CLABSIs) occurring in the intensive care unit (ICU) are common and associated with a high burden.

    METHODS: We implemented a multidimensional approach, incorporating an 11-element bundle, education, surveillance of CLABSI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CLABSI rates and clinical outcomes, and performance feedback in 316 ICUs across 30 low- and middle-income countries. Our dependent variables were CLABSI per 1,000-CL-days and in-ICU all-cause mortality rates. These variables were measured at baseline and during the intervention, specifically during the second month, third month, 4 to 16 months, and 17 to 29 months. Comparisons were conducted using a two-sample t test. To explore the exposure-outcome relationship, we used a generalized linear mixed model with a Poisson distribution to model the number of CLABSIs.

    RESULTS: During 1,837,750 patient-days, 283,087 patients, used 1,218,882 CL-days. CLABSI per 1,000 CL-days rates decreased from 15.34 at the baseline period to 7.97 in the 2nd month (relative risk (RR) = 0.52; 95% confidence interval [CI] = 0.48-0.56; P 

  6. Rosenthal VD, Yin R, Nercelles P, Rivera-Molina SE, Jyoti S, Dongol R, et al.
    Am J Infect Control, 2024 Jan 06.
    PMID: 38185380 DOI: 10.1016/j.ajic.2023.12.019
    BACKGROUND: Reporting on the International Nosocomial Infection Control Consortium study results from 2015 to 2020, conducted in 630 intensive care units across 123 cities in 45 countries spanning Africa, Asia, Eastern Europe, Latin America, and the Middle East.

    METHODS: Prospective intensive care unit patient data collected via International Nosocomial Infection Control Consortium Surveillance Online System. Centers for Disease Control and Prevention/National Health Care Safety Network definitions applied for device-associated health care-associated infections (DA-HAI).

    RESULTS: We gathered data from 204,770 patients, 1,480,620 patient days, 936,976 central line (CL)-days, 637,850 mechanical ventilators (MV)-days, and 1,005,589 urinary catheter (UC)-days. Our results showed 4,270 CL-associated bloodstream infections, 7,635 ventilator-associated pneumonia, and 3,005 UC-associated urinary tract infections. The combined rates of DA-HAIs were 7.28%, and 10.07 DA-HAIs per 1,000 patient days. CL-associated bloodstream infections occurred at 4.55 per 1,000 CL-days, ventilator-associated pneumonias at 11.96 per 1,000 MV-days, and UC-associated urinary tract infections at 2.91 per 1,000 UC days. In terms of resistance, Pseudomonas aeruginosa showed 50.73% resistance to imipenem, 44.99% to ceftazidime, 37.95% to ciprofloxacin, and 34.05% to amikacin. Meanwhile, Klebsiella spp had resistance rates of 48.29% to imipenem, 72.03% to ceftazidime, 61.78% to ciprofloxacin, and 40.32% to amikacin. Coagulase-negative Staphylococci and Staphylococcus aureus displayed oxacillin resistance in 81.33% and 53.83% of cases, respectively.

    CONCLUSIONS: The high rates of DA-HAI and bacterial resistance emphasize the ongoing need for continued efforts to control them.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links