Displaying all 6 publications

Abstract:
Sort:
  1. Singh VA, Wei CC, Haseeb A, Shanmugam R, Ju CS
    J Orthop Surg (Hong Kong), 2019 2 26;27(1):2309499018822247.
    PMID: 30798727 DOI: 10.1177/2309499018822247
    PURPOSE: Bone cement is commonly used as a void filler for bone defects. Antibiotics can be added to bone cement to increase local drug delivery in eradicating infection. After antibiotic elution, nonbiodegradable material becomes an undesirable agent. The purpose of this study was to evaluate effects of addition of vancomycin on the compressive strength of injectable synthetic bone substitute, JectOS®. JectOS, a partially biodegradable cement that over time dissolves and is replaced by bone, could be potentially used as a biodegradable antibiotic carrier.

    METHODS: Vancomycin at various concentrations was added to JectOS and polymethyl methacrylate (PMMA). Then, the cement was molded into standardized dimensions for in vitro testing. Cylindrical vancomycin-JectOS samples were subjected to compressive strength. The results obtained were compared to PMMA-vancomycin compressive strength data attained from historical controls. The zone of inhibition was carried out using vancomycin-JectOS and vancomycin-PMMA disk on methicillin-resistant strain culture agar.

    RESULTS: With the addition of 2.5%, 5%, and 10% vancomycin, the average compressive strengths reduced to 8.01 ± 0.95 MPa (24.6%), 7.52 ± 0.71 MPa (29.2%), and 7.23 ± 1.34 MPa (31.9%). Addition of vancomycin significantly weakened biomechanical properties of JectOS, but there was no significant difference in the compressive strength at increasing concentrations. The average diameters of zone of inhibition for JectOS-vancomycin were 24.7 ± 1.44 (2.5%) mm, 25.9 ± 0.85 mm (5%), and 26.8 ± 1.81 mm (10%), which outperformed PMMA.

    CONCLUSION: JectOS has poor mechanical performance but superior elution property. JectOS-vancomycin cement is suitable as a void filler delivering high local concentration of vancomycin. We recommended using it for contained bone defects that do not require mechanical strength.

  2. Chellappan DK, Yenese Y, Wei CC, Gupta G
    Endocr Metab Immune Disord Drug Targets, 2017 09 11;17(2):87 - 95.
    PMID: 28427246 DOI: 10.2174/1871530317666170421121202
    Background and Objective: The incidence of diabetes has been on the rise and the rate of rise since the turn of this century has been phenomenal. One of the various battling issues faced by diabetics all over the globe is the management of diabetic wounds. Currently, there are several management strategies to deal with the treatment of diabetic wounds. The conventional methods have several limitations. One of the major limitations is the rate and progression of healing of a diabetic wound when adopting a conventional diabetic wound management therapy. Lately, several nano techniques and nano products have emerged in the market that offer promising results for such patients. The treatment outcomes are achieved more efficiently with such nanomedical products.
    Methods: This review attempts to consider the currently available nanotechnological applications in the management of diabetic wounds. We take a deeper look into the available nanotherapeutic agents and the different nanocarriers that could be used in the management of diabetic wound healing. Lately, researchers around the globe have started providing evidences on the effective use of such nanoparticles in various fields of Medicine extending from genetics to various other branches of medicine. This also includes the management of diabetic wounds.
    Conclusion: This paper discusses the challenges faced with these nanotherapies and nanoparticles with regard to the treatment of diabetic wounds.
  3. Yin Wei CC, Haw SS, Bashir ES, Beng SL, Shanmugam R, Keong KM
    J Orthop Surg (Hong Kong), 2017 01;25(1):2309499017690656.
    PMID: 28219305 DOI: 10.1177/2309499017690656
    OBJECTIVE: To compare construct stiffness of cortical screw (CS)-rod transforaminal lumbar interbody fusion (TLIF) construct (G2) versus pedicle screw (PS)-rod TLIF construct (G1) in the standardized porcine lumbar spine.

    METHODS: Six porcine lumbar spines (L2-L5) were separated into 12 functional spine units. Bilateral total facetectomies and interlaminar decompression were performed for all specimens. Non-destructive loading to assess stiffness in lateral bending, flexion and extension as well as axial rotation was performed using a universal material testing machine.

    RESULTS: PS and CS constructs were significantly stiffer than the intact spine except in axial rotation. Using the normalized ratio to the intact spine, there is no significant difference between the stiffness of PS and CS: flexion (1.41 ± 0.27, 1.55 ± 0.32), extension (1.98 ± 0.49, 2.25 ± 0.44), right lateral flexion (1.93 ± 0.57, 1.55 ± 0.30), left lateral flexion (2.00 ± 0.73, 2.16 ± 0.20), right axial rotation (0.99 ± 0.21, 0.83 ± 0.26) and left axial rotation (0.96 ± 0.22, 0.92 ± 0.25).

    CONCLUSION: The CS-rod TLIF construct provided comparable construct stiffness to a traditional PS-rod TLIF construct in a 'standardized' porcine lumbar spine model.

  4. Keong KM, Aziz I, Yin Wei CC
    J Orthop Surg (Hong Kong), 2017 01 01;25(1):2309499016684431.
    PMID: 29185383 DOI: 10.1177/2309499016684431
    PURPOSE: This study aims to derive a formula to predict post-operative height increment in Lenke 1 and Lenke 2 adolescent idiopathic scoliosis (AIS) patients using preoperative radiological parameters.

    METHODS: This study involved 70 consecutive Lenke 1 and 2 AIS patients who underwent scoliosis correction with alternate-level pedicle screw instrumentation. Preoperative parameters that were measured included main thoracic (MT) Cobb angle, proximal thoracic (PT) Cobb angle, lumbar Cobb angle as well as thoracic kyphosis. Side-bending flexibility (SBF) and fulcrum-bending flexibility (FBF) were derived from the measurements. Preoperative height and post-operative height increment was measured by an independent observer using a standardized method.

    RESULTS: MT Cobb angle and FB Cobb angle were significant predictors ( p < 0.001) of height increment from multiple linear regression analysis ( R = 0.784, R2 = 0.615). PT Cobb angle, lumbar, SB Cobb angle, preoperative height and number of fused segment were not significant predictors for the height increment based on the multivariable analysis. Increase in post-operative height could be calculated by the formula: Increase in height (cm) = (0.09 × preoperative MT Cobb angle) - (0.04 x FB Cobb angle) - 0.5.

    CONCLUSION: The proposed formula of increase in height (cm) = (0.09 × preoperative MT Cobb angle) - (0.04 × FB Cobb angle) - 0.5 could predict post-operative height gain to within 5 mm accuracy in 51% of patients, within 10 mm in 70% and within 15 mm in 86% of patients.

  5. Chellappan DK, Yenese Y, Wei CC, Chellian J, Gupta G
    J Environ Pathol Toxicol Oncol, 2017;36(4):283-291.
    PMID: 29431061 DOI: 10.1615/JEnvironPatholToxicolOncol.2017020182
    Oral delivery of insulin is one of the most promising and anticipated areas in the treatment of diabetes, primarily because it may significantly improve the quality of life of diabetics who receive insulin regularly. Several problems have been reported regarding the subcutaneous delivery of insulin, ranging from cardiovascular complications to weight gain. One of the approaches to overcoming these issues is to administer insulin through the oral route. However, there are several challenges in developing an oral route for insulin delivery; insulin has extremely poor bioavailability and a low diffusion rate through the mucus layer. A wide range of oral insulin delivery techniques have recently been researched, ranging from nanoparticles to liposomes, self-emulsifying systems, and hydrogels. These techniques have shown promising potential in the oral delivery of insulin. This review considers the current literature on the advances and challenges in the development of oral insulin.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links