Displaying all 10 publications

Abstract:
Sort:
  1. Wang X, Walker A, Revez JA, Ni G, Adams MJ, McIntosh AM, et al.
    Am J Hum Genet, 2023 Jul 06;110(7):1207-1215.
    PMID: 37379836 DOI: 10.1016/j.ajhg.2023.06.006
    In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.
  2. Byrne EM, Psychiatric Genetics Consortium Major Depressive Disorder Working Group, Raheja UK, Stephens SH, Heath AC, Madden PA, et al.
    J Clin Psychiatry, 2015 Feb;76(2):128-34.
    PMID: 25562672 DOI: 10.4088/JCP.14m08981
    OBJECTIVE: To test common genetic variants for association with seasonality (seasonal changes in mood and behavior) and to investigate whether there are shared genetic risk factors between psychiatric disorders and seasonality.

    METHOD: Genome-wide association studies (GWASs) were conducted in Australian (between 1988 and 1990 and between 2010 and 2013) and Amish (between May 2010 and December 2011) samples in whom the Seasonal Pattern Assessment Questionnaire (SPAQ) had been administered, and the results were meta-analyzed in a total sample of 4,156 individuals. Genetic risk scores based on results from prior large GWAS studies of bipolar disorder, major depressive disorder (MDD), and schizophrenia were calculated to test for overlap in risk between psychiatric disorders and seasonality.

    RESULTS: The most significant association was with rs11825064 (P = 1.7 × 10⁻⁶, β = 0.64, standard error = 0.13), an intergenic single nucleotide polymorphism (SNP) found on chromosome 11. The evidence for overlap in risk factors was strongest for schizophrenia and seasonality, with the schizophrenia genetic profile scores explaining 3% of the variance in log-transformed global seasonality scores. Bipolar disorder genetic profile scores were also associated with seasonality, although at much weaker levels (minimum P value = 3.4 × 10⁻³), and no evidence for overlap in risk was detected between MDD and seasonality.

    CONCLUSIONS: Common SNPs of large effect most likely do not exist for seasonality in the populations examined. As expected, there were overlapping genetic risk factors for bipolar disorder (but not MDD) with seasonality. Unexpectedly, the risk for schizophrenia and seasonality had the largest overlap, an unprecedented finding that requires replication in other populations and has potential clinical implications considering overlapping cognitive deficits in seasonal affective disorders and schizophrenia.

  3. Maier R, Moser G, Chen GB, Ripke S, Cross-Disorder Working Group of the Psychiatric Genomics Consortium, Coryell W, et al.
    Am J Hum Genet, 2015 Feb 05;96(2):283-94.
    PMID: 25640677 DOI: 10.1016/j.ajhg.2014.12.006
    Genetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This method exploits correlations between disorders and simultaneously evaluates individual risk for each disorder. We show that the multivariate approach significantly increases the prediction accuracy for schizophrenia, bipolar disorder, and major depressive disorder in the discovery as well as in independent validation datasets. By grouping SNPs based on genome annotation and fitting multiple random effects, we show that the prediction accuracy could be further improved. The gain in prediction accuracy of the multivariate approach is equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, and 76% for major depressive disorders using single trait models. Because our approach can be readily applied to any number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low polygenic risk.
  4. Peyrot WJ, Lee SH, Milaneschi Y, Abdellaoui A, Byrne EM, Esko T, et al.
    Mol Psychiatry, 2015 Jun;20(6):735-43.
    PMID: 25917368 DOI: 10.1038/mp.2015.50
    An association between lower educational attainment (EA) and an increased risk for depression has been confirmed in various western countries. This study examines whether pleiotropic genetic effects contribute to this association. Therefore, data were analyzed from a total of 9662 major depressive disorder (MDD) cases and 14,949 controls (with no lifetime MDD diagnosis) from the Psychiatric Genomics Consortium with additional Dutch and Estonian data. The association of EA and MDD was assessed with logistic regression in 15,138 individuals indicating a significantly negative association in our sample with an odds ratio for MDD 0.78 (0.75-0.82) per standard deviation increase in EA. With data of 884,105 autosomal common single-nucleotide polymorphisms (SNPs), three methods were applied to test for pleiotropy between MDD and EA: (i) genetic profile risk scores (GPRS) derived from training data for EA (independent meta-analysis on ~120,000 subjects) and MDD (using a 10-fold leave-one-out procedure in the current sample), (ii) bivariate genomic-relationship-matrix restricted maximum likelihood (GREML) and (iii) SNP effect concordance analysis (SECA). With these methods, we found (i) that the EA-GPRS did not predict MDD status, and MDD-GPRS did not predict EA, (ii) a weak negative genetic correlation with bivariate GREML analyses, but this correlation was not consistently significant, (iii) no evidence for concordance of MDD and EA SNP effects with SECA analysis. To conclude, our study confirms an association of lower EA and MDD risk, but this association was not because of measurable pleiotropic genetic effects, which suggests that environmental factors could be involved, for example, socioeconomic status.
  5. Milaneschi Y, Lamers F, Peyrot WJ, Baune BT, Breen G, Dehghan A, et al.
    JAMA Psychiatry, 2017 12 01;74(12):1214-1225.
    PMID: 29049554 DOI: 10.1001/jamapsychiatry.2017.3016
    Importance: The association between major depressive disorder (MDD) and obesity may stem from shared immunometabolic mechanisms particularly evident in MDD with atypical features, characterized by increased appetite and/or weight (A/W) during an active episode.

    Objective: To determine whether subgroups of patients with MDD stratified according to the A/W criterion had a different degree of genetic overlap with obesity-related traits (body mass index [BMI] and levels of C-reactive protein [CRP] and leptin).

    Design, Setting, and Patients: This multicenter study assembled genome-wide genotypic and phenotypic measures from 14 data sets of the Psychiatric Genomics Consortium. Data sets were drawn from case-control, cohort, and population-based studies, including 26 628 participants with established psychiatric diagnoses and genome-wide genotype data. Data on BMI were available for 15 237 participants. Data were retrieved and analyzed from September 28, 2015, through May 20, 2017.

    Main Outcomes and Measures: Lifetime DSM-IV MDD was diagnosed using structured diagnostic instruments. Patients with MDD were stratified into subgroups according to change in the DSM-IV A/W symptoms as decreased or increased.

    Results: Data included 11 837 participants with MDD and 14 791 control individuals, for a total of 26 628 participants (59.1% female and 40.9% male). Among participants with MDD, 5347 (45.2%) were classified in the decreased A/W and 1871 (15.8%) in the increased A/W subgroups. Common genetic variants explained approximately 10% of the heritability in the 2 subgroups. The increased A/W subgroup showed a strong and positive genetic correlation (SE) with BMI (0.53 [0.15]; P = 6.3 × 10-4), whereas the decreased A/W subgroup showed an inverse correlation (-0.28 [0.14]; P = .06). Furthermore, the decreased A/W subgroup had a higher polygenic risk for increased BMI (odds ratio [OR], 1.18; 95% CI, 1.12-1.25; P = 1.6 × 10-10) and levels of CRP (OR, 1.08; 95% CI, 1.02-1.13; P = 7.3 × 10-3) and leptin (OR, 1.09; 95% CI, 1.06-1.12; P = 1.7 × 10-3).

    Conclusions and Relevance: The phenotypic associations between atypical depressive symptoms and obesity-related traits may arise from shared pathophysiologic mechanisms in patients with MDD. Development of treatments effectively targeting immunometabolic dysregulations may benefit patients with depression and obesity, both syndromes with important disability.

  6. Coleman JRI, Peyrot WJ, Purves KL, Davis KAS, Rayner C, Choi SW, et al.
    Mol Psychiatry, 2020 Jul;25(7):1430-1446.
    PMID: 31969693 DOI: 10.1038/s41380-019-0546-6
    Depression is more frequent among individuals exposed to traumatic events. Both trauma exposure and depression are heritable. However, the relationship between these traits, including the role of genetic risk factors, is complex and poorly understood. When modelling trauma exposure as an environmental influence on depression, both gene-environment correlations and gene-environment interactions have been observed. The UK Biobank concurrently assessed Major Depressive Disorder (MDD) and self-reported lifetime exposure to traumatic events in 126,522 genotyped individuals of European ancestry. We contrasted genetic influences on MDD stratified by reported trauma exposure (final sample size range: 24,094-92,957). The SNP-based heritability of MDD with reported trauma exposure (24%) was greater than MDD without reported trauma exposure (12%). Simulations showed that this is not confounded by the strong, positive genetic correlation observed between MDD and reported trauma exposure. We also observed that the genetic correlation between MDD and waist circumference was only significant in individuals reporting trauma exposure (rg = 0.24, p = 1.8 × 10-7 versus rg = -0.05, p = 0.39 in individuals not reporting trauma exposure, difference p = 2.3 × 10-4). Our results suggest that the genetic contribution to MDD is greater when reported trauma is present, and that a complex relationship exists between reported trauma exposure, body composition, and MDD.
  7. Peyrot WJ, Van der Auwera S, Milaneschi Y, Dolan CV, Madden PAF, Sullivan PF, et al.
    Biol Psychiatry, 2018 Jul 15;84(2):138-147.
    PMID: 29129318 DOI: 10.1016/j.biopsych.2017.09.009
    BACKGROUND: The heterogeneity of genetic effects on major depressive disorder (MDD) may be partly attributable to moderation of genetic effects by environment, such as exposure to childhood trauma (CT). Indeed, previous findings in two independent cohorts showed evidence for interaction between polygenic risk scores (PRSs) and CT, albeit in opposing directions. This study aims to meta-analyze MDD-PRS × CT interaction results across these two and other cohorts, while applying more accurate PRSs based on a larger discovery sample.

    METHODS: Data were combined from 3024 MDD cases and 2741 control subjects from nine cohorts contributing to the MDD Working Group of the Psychiatric Genomics Consortium. MDD-PRS were based on a discovery sample of ∼110,000 independent individuals. CT was assessed as exposure to sexual or physical abuse during childhood. In a subset of 1957 cases and 2002 control subjects, a more detailed five-domain measure additionally included emotional abuse, physical neglect, and emotional neglect.

    RESULTS: MDD was associated with the MDD-PRS (odds ratio [OR] = 1.24, p = 3.6 × 10-5, R2 = 1.18%) and with CT (OR = 2.63, p = 3.5 × 10-18 and OR = 2.62, p = 1.4 ×10-5 for the two- and five-domain measures, respectively). No interaction was found between MDD-PRS and the two-domain and five-domain CT measure (OR = 1.00, p = .89 and OR = 1.05, p = .66).

    CONCLUSIONS: No meta-analytic evidence for interaction between MDD-PRS and CT was found. This suggests that the previously reported interaction effects, although both statistically significant, can best be interpreted as chance findings. Further research is required, but this study suggests that the genetic heterogeneity of MDD is not attributable to genome-wide moderation of genetic effects by CT.

  8. Pain O, Hodgson K, Trubetskoy V, Ripke S, Marshe VS, Adams MJ, et al.
    Biol Psychiatry Glob Open Sci, 2022 Apr;2(2):115-126.
    PMID: 35712048 DOI: 10.1016/j.bpsgos.2021.07.008
    BACKGROUND: Antidepressants are a first-line treatment for depression. However, only a third of individuals experience remission after the first treatment. Common genetic variation, in part, likely regulates antidepressant response, yet the success of previous genome-wide association studies has been limited by sample size. This study performs the largest genetic analysis of prospectively assessed antidepressant response in major depressive disorder to gain insight into the underlying biology and enable out-of-sample prediction.

    METHODS: Genome-wide analysis of remission (n remit = 1852, n nonremit = 3299) and percentage improvement (n = 5218) was performed. Single nucleotide polymorphism-based heritability was estimated using genome-wide complex trait analysis. Genetic covariance with eight mental health phenotypes was estimated using polygenic scores/AVENGEME. Out-of-sample prediction of antidepressant response polygenic scores was assessed. Gene-level association analysis was performed using MAGMA and transcriptome-wide association study. Tissue, pathway, and drug binding enrichment were estimated using MAGMA.

    RESULTS: Neither genome-wide association study identified genome-wide significant associations. Single nucleotide polymorphism-based heritability was significantly different from zero for remission (h 2 = 0.132, SE = 0.056) but not for percentage improvement (h 2 = -0.018, SE = 0.032). Better antidepressant response was negatively associated with genetic risk for schizophrenia and positively associated with genetic propensity for educational attainment. Leave-one-out validation of antidepressant response polygenic scores demonstrated significant evidence of out-of-sample prediction, though results varied in external cohorts. Gene-based analyses identified ETV4 and DHX8 as significantly associated with antidepressant response.

    CONCLUSIONS: This study demonstrates that antidepressant response is influenced by common genetic variation, has a genetic overlap schizophrenia and educational attainment, and provides a useful resource for future research. Larger sample sizes are required to attain the potential of genetics for understanding and predicting antidepressant response.

  9. Mullins N, Kang J, Campos AI, Coleman JRI, Edwards AC, Galfalvy H, et al.
    Biol Psychiatry, 2022 Feb 01;91(3):313-327.
    PMID: 34861974 DOI: 10.1016/j.biopsych.2021.05.029
    BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders.

    METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors.

    RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged.

    CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links