METHODS: We used two diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank neuroimaging data release (FA: n = 6401; MD: n = 6390).
RESULTS: We found significantly lower FA in the superior longitudinal fasciculus (β = -.035, pcorrected = .029) and significantly higher MD in a global measure of thalamic radiations (β = .029, pcorrected = .021), as well as higher MD in the superior (β = .034, pcorrected = .039) and inferior (β = .029, pcorrected = .043) longitudinal fasciculus and in the anterior (β = .025, pcorrected = .046) and superior (β = .027, pcorrected = .043) thalamic radiation associated with NETRIN1-PRS. Genomic-PRS was also associated with lower FA and higher MD in several tracts.
CONCLUSIONS: Our findings indicate that variation in the NETRIN1 signaling pathway may confer risk for major depressive disorder through effects on a number of white matter tracts.
METHODS: The correlation of these variants to the plasma BDNF level among Malaysian MDD patients was assessed. A total of 300 cases and 300 matched controls recruited from four public hospitals within the Klang Valley of Selangor State, Malaysia and matched for age, sex and ethnicity were screened for BDNF rs6265, rs1048218 and rs1048220 using high resolution melting (HRM).
FINDINGS: BDNF rs1048218 and BDNF rs1048220 were monomorphic and were excluded from further analysis. The distribution of the alleles and genotypes for BDNF rs6265 was in Hardy-Weinberg equilibrium for the controls (p = 0.13) but was in Hardy Weinberg disequilibrium for the cases (p = 0.011). Findings from this study indicated that having BDNF rs6265 in the Malaysian population increase the odds of developing MDD by 2.05 folds (95% CI = 1.48-3.65). Plasma from 206 cases and 206 controls were randomly selected to measure the BDNF level using enzyme-linked immunosorbent assay (ELISA). A significant decrease in the plasma BDNF level of the cases as compared to controls (p<0.0001) was observed. However, there was no evidence of the effect of the rs6265 genotypes on the BDNF level indicating a possible role of other factors in modulating the BDNF level that warrants further investigation.
CONCLUSION: The study indicated that having the BDNF rs6265 allele (A) increase the risk of developing MDD in the Malaysian population suggesting a possible role of BDNF in the etiology of the disorder.
METHODS: Data were combined from 3024 MDD cases and 2741 control subjects from nine cohorts contributing to the MDD Working Group of the Psychiatric Genomics Consortium. MDD-PRS were based on a discovery sample of ∼110,000 independent individuals. CT was assessed as exposure to sexual or physical abuse during childhood. In a subset of 1957 cases and 2002 control subjects, a more detailed five-domain measure additionally included emotional abuse, physical neglect, and emotional neglect.
RESULTS: MDD was associated with the MDD-PRS (odds ratio [OR] = 1.24, p = 3.6 × 10-5, R2 = 1.18%) and with CT (OR = 2.63, p = 3.5 × 10-18 and OR = 2.62, p = 1.4 ×10-5 for the two- and five-domain measures, respectively). No interaction was found between MDD-PRS and the two-domain and five-domain CT measure (OR = 1.00, p = .89 and OR = 1.05, p = .66).
CONCLUSIONS: No meta-analytic evidence for interaction between MDD-PRS and CT was found. This suggests that the previously reported interaction effects, although both statistically significant, can best be interpreted as chance findings. Further research is required, but this study suggests that the genetic heterogeneity of MDD is not attributable to genome-wide moderation of genetic effects by CT.
METHOD: Genome-wide association studies (GWASs) were conducted in Australian (between 1988 and 1990 and between 2010 and 2013) and Amish (between May 2010 and December 2011) samples in whom the Seasonal Pattern Assessment Questionnaire (SPAQ) had been administered, and the results were meta-analyzed in a total sample of 4,156 individuals. Genetic risk scores based on results from prior large GWAS studies of bipolar disorder, major depressive disorder (MDD), and schizophrenia were calculated to test for overlap in risk between psychiatric disorders and seasonality.
RESULTS: The most significant association was with rs11825064 (P = 1.7 × 10⁻⁶, β = 0.64, standard error = 0.13), an intergenic single nucleotide polymorphism (SNP) found on chromosome 11. The evidence for overlap in risk factors was strongest for schizophrenia and seasonality, with the schizophrenia genetic profile scores explaining 3% of the variance in log-transformed global seasonality scores. Bipolar disorder genetic profile scores were also associated with seasonality, although at much weaker levels (minimum P value = 3.4 × 10⁻³), and no evidence for overlap in risk was detected between MDD and seasonality.
CONCLUSIONS: Common SNPs of large effect most likely do not exist for seasonality in the populations examined. As expected, there were overlapping genetic risk factors for bipolar disorder (but not MDD) with seasonality. Unexpectedly, the risk for schizophrenia and seasonality had the largest overlap, an unprecedented finding that requires replication in other populations and has potential clinical implications considering overlapping cognitive deficits in seasonal affective disorders and schizophrenia.
METHODS: We analysed genome-wide single-nucleotide polymorphism (SNP) data for the five disorders in 33,332 cases and 27,888 controls of European ancestory. To characterise allelic effects on each disorder, we applied a multinomial logistic regression procedure with model selection to identify the best-fitting model of relations between genotype and phenotype. We examined cross-disorder effects of genome-wide significant loci previously identified for bipolar disorder and schizophrenia, and used polygenic risk-score analysis to examine such effects from a broader set of common variants. We undertook pathway analyses to establish the biological associations underlying genetic overlap for the five disorders. We used enrichment analysis of expression quantitative trait loci (eQTL) data to assess whether SNPs with cross-disorder association were enriched for regulatory SNPs in post-mortem brain-tissue samples.
FINDINGS: SNPs at four loci surpassed the cutoff for genome-wide significance (p<5×10(-8)) in the primary analysis: regions on chromosomes 3p21 and 10q24, and SNPs within two L-type voltage-gated calcium channel subunits, CACNA1C and CACNB2. Model selection analysis supported effects of these loci for several disorders. Loci previously associated with bipolar disorder or schizophrenia had variable diagnostic specificity. Polygenic risk scores showed cross-disorder associations, notably between adult-onset disorders. Pathway analysis supported a role for calcium channel signalling genes for all five disorders. Finally, SNPs with evidence of cross-disorder association were enriched for brain eQTL markers.
INTERPRETATION: Our findings show that specific SNPs are associated with a range of psychiatric disorders of childhood onset or adult onset. In particular, variation in calcium-channel activity genes seems to have pleiotropic effects on psychopathology. These results provide evidence relevant to the goal of moving beyond descriptive syndromes in psychiatry, and towards a nosology informed by disease cause.
FUNDING: National Institute of Mental Health.