Displaying all 4 publications

Abstract:
Sort:
  1. Azmi ID, Moghimi SM, Yaghmur A
    Ther Deliv, 2015 Dec;6(12):1347-64.
    PMID: 26652281 DOI: 10.4155/tde.15.81
    Nonlamellar liquid crystalline phases are attractive platforms for drug solubilization and targeted delivery. The attractiveness of this formulation principle is linked to the nanostructural versatility, compatiblity, digestiblity and bioadhesive properties of their lipid constituents, and the capability of solubilizing and sustaining the release of amphiphilic, hydrophobic and hydrophilic drugs. Nonlamellar liquid crystalline phases offer two distinct promising strategies in the development of drug delivery systems. These comprise formation of ISAsomes (internally self-assembled 'somes' or particles) such as cubosomes and hexosomes, and in situ formation of parenteral dosage forms with tunable nanostructures at the site of administration. This review outlines the unique features of cubosomes and hexosomes and their potential utilization as promising platforms for drug delivery.
  2. Bor G, Mat Azmi ID, Yaghmur A
    Ther Deliv, 2019 02;10(2):113-132.
    PMID: 30678550 DOI: 10.4155/tde-2018-0062
    The emergence of nanomedicine as an innovative and promising alternative technology shows many advantages over conventional cancer therapies and provides new opportunities for early detection, improved treatment, and diagnosis of cancer. Despite the cancer nanomedicines' capability of delivering chemotherapeutic agents while providing lower systemic toxicity, it is paramount to consider the cancer complexity and dynamics for bridging the translational bench-to-bedside gap. It is important to conduct appropriate investigations for exploiting the tumor microenvironment, and achieving a more comprehensive understanding of the fundamental biological processes in cancer and their roles in modulating nanoparticle-protein interactions, blood circulation, and tumor penetration. This review provides an overview of the current cancer nanomedicines, the major challenges, and the future opportunities in this research area.
  3. Abdulbaqi IM, Assi RA, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T, et al.
    Pharmaceuticals (Basel), 2021 Jul 27;14(8).
    PMID: 34451824 DOI: 10.3390/ph14080725
    Lung cancer (LC) is the leading cause of cancer-related deaths, responsible for approximately 18.4% of all cancer mortalities in both sexes combined. The use of systemic therapeutics remains one of the primary treatments for LC. However, the therapeutic efficacy of these agents is limited due to their associated severe adverse effects, systemic toxicity and poor selectivity. In contrast, pulmonary delivery of anticancer drugs can provide many advantages over conventional routes. The inhalation route allows the direct delivery of chemotherapeutic agents to the target LC cells with high local concertation that may enhance the antitumor activity and lead to lower dosing and fewer systemic toxicities. Nevertheless, this route faces by many physiological barriers and technological challenges that may significantly affect the lung deposition, retention, and efficacy of anticancer drugs. The use of lipid-based nanocarriers could potentially overcome these problems owing to their unique characteristics, such as the ability to entrap drugs with various physicochemical properties, and their enhanced permeability and retention (EPR) effect for passive targeting. Besides, they can be functionalized with different targeting moieties for active targeting. This article highlights the physiological, physicochemical, and technological considerations for efficient inhalable anticancer delivery using lipid-based nanocarriers and their cutting-edge role in LC treatment.
  4. Azmi ID, Wibroe PP, Wu LP, Kazem AI, Amenitsch H, Moghimi SM, et al.
    J Control Release, 2016 Oct 10;239:1-9.
    PMID: 27524284 DOI: 10.1016/j.jconrel.2016.08.011
    Non-lamellar liquid crystalline aqueous nanodispersions, known also as ISAsomes (internally self-assembled 'somes' or nanoparticles), are gaining increasing interest in drug solubilisation and bio-imaging, but they often exhibit poor hemocompatibility and induce cytotoxicity. This limits their applications in intravenous drug delivery and targeting. Using a binary mixture of citrem and soy phosphatidylcholine (SPC) at different weight ratios, we describe a library of colloidally stable aqueous and hemocompatible nanodispersions of diverse nanoarchitectures (internal self-assembled nanostructures). This engineered library is structurally stable in human plasma as well as being hemocompatible (non-hemolytic, and poor activator of the complement system). By varying citrem to lipid weight ratio, the nanodispersion susceptibility to macrophage uptake could also be modulated. Finally, the formation of nanodispersions comprising internally V2 (inverse bicontinuous cubic) and H2 (inverse hexagonal) nanoarchitectures was achieved without the use of an organic solvent, a secondary emulsifier, or high-energy input. The tunable binary citrem/SPC nanoplatform holds promise for future development of hemocompatible and immune-safe nanopharmaceuticals.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links