Displaying all 5 publications

Abstract:
Sort:
  1. Nasaruddin RR, Yao Q, Chen T, Hülsey MJ, Yan N, Xie J
    Nanoscale, 2018 Dec 04.
    PMID: 30512030 DOI: 10.1039/c8nr07197g
    Quasi-homogeneous ligand-protected gold nanoclusters (Au NCs) with atomic precision and well-defined structure offer great opportunity for exploring the catalytic nature of nanogold catalysts at a molecular level. Herein, using real-time electrospray ionization mass spectrometry (ESI-MS), we have successfully identified the desorption and re-adsorption of p-mercaptobenzoic acid (p-MBA) ligands from Au25(p-MBA)18 NC catalysts during the hydrogenation of 4-nitrophenol in solution. This ligand dynamic (desorption and re-adsorption) would initiate structural transformation of Au25(p-MBA)18 NC catalysts during the reaction, forming a mixture of smaller Au NCs (Au23(p-MBA)16 as the major species) at the beginning of catalytic reaction, which could further be transformed into larger Au NCs (Au26(p-MBA)19 as the major species). The adsorption of hydrides (from NaBH4) is identified as the determining factor that could induce the ligand dynamic and structural transformation of NC catalysts. This study provides fundamental insights into the catalytic nature of Au NCs, including catalytic mechanism, active species and stability of Au NC catalysts during a catalytic reaction.
  2. Shi B, Guo X, Liu H, Jiang K, Liu L, Yan N, et al.
    Food Chem, 2024 Apr 16;438:137994.
    PMID: 37984001 DOI: 10.1016/j.foodchem.2023.137994
    Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.
  3. Abdul Gafor AH, Cheong Ping P, Zainal Abidin AF, Saruddin MZ, Kah Yan N, Adam SQ, et al.
    Int J Nephrol, 2014;2014:629459.
    PMID: 24587904 DOI: 10.1155/2014/629459
    Background. Haemodialysis (HD) catheter-related bloodstream infections (CRBSIs) are a major complication of long-term catheter use in HD. This study identified the epidemiology of HD CRBSIs and to aid in the choice of empiric antibiotics therapy given to patients with HD CRBSIs. Methods. Patients with HD CRBSIs were identified. Their blood cultures were performed according to standard sterile technique. Specimens were sent to the microbiology lab for culture and sensitivity testing. Results were tabulated in antibiograms. Results. 18 patients with a median age of 61.0 years (IQR: 51.5-73.25) were confirmed to have HD CRBSIs based on our study criteria. Eight (44.4%) patients had gram-negative infections, 7 (38.9%) patients gram-positive infections, and 3 (16.7%) patients had polymicrobial infections. We noted that most of the gram-negative bacteria were sensitive to ceftazidime. Unfortunately, cloxacillin resistance was high among gram-positive organisms. Coagulase-negative Staphylococcus and Bacillus sp. were the most common gram-positive organisms and they were sensitive to vancomycin. Conclusion. Our study revealed the increased incidence of gram-negative organism in HD CRBSIs. Antibiogram is an important tool in deciding empirical antibiotics for HD CRBSIs. Tailoring your antibiotics accordingly to the antibiogram can increase the chance of successful treatment and prevent the emergence of bacterial resistance.
  4. Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, et al.
    Food Chem, 2024 Jul 15;446:138739.
    PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739
    Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
  5. Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, et al.
    PMID: 37552798 DOI: 10.1080/10408398.2023.2239350
    Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links