Material and Methods: Four FNEs were retrieved from revision surgeries of four patients with prior intramedullary nail fixation of their pertrochanteric hip fractures complicated by femoral head perforation. The FNEs were divided into two groups based on whether or not there was radiographic evidence of medial migration prior to the revisions. Wear patterns on the FNEs were then assessed using both scanning electron microscopy and light microscopy.
Results: Repetitive, linearly-arranged, regularly-spaced, unique transverse scratch marks were found only in the group with medial migration, corresponding to the specific segment of the FNE that passed through the intramedullary component of the PFNA during medial migration. These scratch marks were absent in the group without medial migration.
Conclusion: Our findings are in support of a ratcheting mechanism behind the medial migration phenomenon with repetitive toggling at the intramedullary nail-FNE interface and progressive propagation of the FNE against gravity.
METHODS: BV2 microglia cell suspensions were prepared with type I collagen and cast into culture plates. To characterise the BV2 microglia cultured in 3D, the cultures were evaluated for their viability, cell morphology and response to lipopolysaccharide (LPS) activation. Conventional monolayer cultures (grown on uncoated and collagen-coated polystyrene) were set up concurrently for comparison.
RESULTS: BV2 microglia in 3D collagen matrices were viable at 48 hrs of culture and exhibit a ramified morphology with multiplanar cytoplasmic projections. Following stimulation with 1 μg/ml LPS, microglia cultured in 3D collagen gels increase their expression of nitric oxide (NO) and CD40, indicating their capacity to become activated within the matrix. Up to 97.8% of BV2 microglia grown in 3D cultures gained CD40 positivity in response to LPS, compared to approximately 60% of cells grown in a monolayer (P