Pollination ecology of three Durio species, D. grandiflorus, D. oblongus, and D. kutejensis (Bombacaceae), was studied in a lowland dipterocarp forest in Sarawak, Malaysia, during a peak flowering period when at least 305 species of plants bloomed in 1996. Durio has been reported to be pollinated by bats in Peninsular Malaysia. However, my observations of flower visitors and pollination experiments indicated that two species, D. grandiflorus and D. oblongus, were pollinated by spiderhunters (Nectariniidae) and that the other species, D. kutejensis, was pollinated by giant honey bees and bats as well as birds. Hand-pollination experiments showed that all three species were obligate outbreeders. A resource limitation in fruit production was suggested. The former two species were visited only by spiderhunters, and the bagged flowers that were opened for animal visitors only at night bore no fruit, while those that were opened only during the day bore fruits, at comparable fruiting ratios to open pollination. Durio kutejensis was observed to be visited by giant honey bees, birds, and bats at different times of day, and three series of bagged experiments that exposed the flowers to animal visitors at different times of day bore fruits at a comparable ratio to open-pollination.
Pollination ecology of an emergent tree species, Shorea (section Mutica) parvifolia (Dipterocarpaceae), was studied using the canopy observation system in a lowland dipterocarp forest in Sarawak, Malaysia, during a general flowering period in 1996. Although the species has been reported to be pollinated by thrips in Peninsular Malaysia, our observations of flower visitors and pollination experiments indicated that beetles (Chrysomelidae and Curculionidae, Coleoptera) contributed to pollination of S. parvifolia in Sarawak. Beetles accounted for 74% of the flower visitors collected by net-sweeping, and 30% of the beetles carried pollen, while thrips accounted for 16% of the visitors, and 12% of the thrips carried pollen. The apical parts of the petals and pollen served as a reward for the beetles. Thrips stayed inside the flower almost continuously after arrival, and movements among flowers were rare. Fruit set was significantly increased by introduction of beetles to bagged flowers, but not by introduction of thrips. Hand-pollination experiments and comparison of fruit set in untreated, bagged, and open flowers suggested that S. parvifolia was mainly outbreeding.
The first systematic observation of a general flowering, a phenomenon unique to lowland mixed-dipterocarp forests in Southeast Asia, is presented. During general flowering, which occurs at irregular intervals of 3-10 yr, nearly all dipterocarp species together with species of other families come heavily into flower. We monitored reproductive phenology of 576 individual plants representing 305 species in 56 families in Sarawak, Malaysia. Observations continued for 53 mo from August 1992 and covered one episode of a general flowering cycle. Among 527 effective reproductive events during 43 mo, 57% were concentrated in the general flowering period (GFP) of 10 mo in 1996. We classified 257 species into flowering types based on timing and frequency of flowering. The most abundant type was "general flowering" (35%), which flowered only during GFP. The others were "supra-annual" (19%), "annual" (13%), and "sub-annual" (5%) types. General flowering type and temporal aggregation in reproductive events were commonly found among species in various categories of taxonomic groups, life forms, pollination systems, and fruit types. Possible causes for general flowering, such as promotion of pollination brought about by interspecific synchronization and paucity of climatic cues suitable for flowering trigger, are proposed, in addition to the predator satiation hypothesis of Janzen (1974).
Flowerings and flower visitors were observed continuously in alowland dipterocarp forest in Sarawak, Malaysia, for 53 mo in1992-1996. Flower visitors of 270 plant species were observed orcollected, and pollinators were assessed by observing body contact tostigmas and anthers. We recognized 12 categories of pollination systems.Among them, plants pollinated by social bees included the largest numberof species (32%) and were followed by beetle-pollinated species(20%). Pollination systems were significantly related with somefloral characters (flowering time of day, reward, and floral shape), butnot with floral color. Based on the relationships between pollinatorsand floral characters, we described pollination syndromes found in alowland dipterocarp forest. The dominance of social bees and beetlesamong pollinators is discussed in relation to the general floweringobserved in dipterocarp forests of West Malesia. In spite of high plantspecies diversity and consequent low population densities of lowlanddipterocarp forests, long-distance-specific pollinators were uncommoncompared with theNeotropics.
While many tropical countries are experiencing rapid deforestation, some have experienced forest transition (FT) from net deforestation to net reforestation. Numerous studies have identified causative factors of FT, among which forest scarcity has been considered as a prerequisite for FT. In fact, in SE Asia, the Philippines, Thailand and Viet Nam, which experienced FT since 1990, exhibited a lower remaining forest area (30±8%) than the other five countries (68±6%, Cambodia, Indonesia, Laos, Malaysia, and Myanmar) where forest loss continues. In this study, we examined 1) the factors associated with forest scarcity, 2) the proximate and/or underlying factors that have driven forest area change, and 3) whether causative factors changed across FT phases (from deforestation to net forest gain) during 1980-2010 in the eight SE Asian countries. We used production of wood, food, and export-oriented food commodities as proximate causes and demographic, social, economic and environmental factors, as well as land-use efficiency, and wood and food trade as underlying causes that affect forest area change. Remaining forest area in 1990 was negatively correlated with population density and potential land area of lowland forests, while positively correlated with per capita wood production. This implies that countries rich in accessible and productive forests, and higher population pressures are the ones that have experienced forest scarcity, and eventually FT. Food production and agricultural input were negatively and positively correlated, respectively, with forest area change during 1980-2009. This indicates that more food production drives deforestation, but higher efficiency of agriculture is correlated with forest gain. We also found a U-shaped response of forest area change to social openness, suggesting that forest gain can be achieved in both open and closed countries, but deforestation might be accelerated in countries undergoing societal transition. These results indicate the importance of environmental, agricultural and social variables on forest area dynamics, and have important implications for predicting future tropical forest change.
Insect seed predators of 24 dipterocarp species (including the genera ot Dipterocarpus, Dryobalanops and Shorea) and five species belonging to the Moraceae, Myrtaceae, Celastraceae and Sapotaceae were investigated. In a tropical lowland dipterocarp forest in Sarawak, Malaysia, these trees produces seeds irregularly by intensely during general flowering and seeding events in 1996 and/or 1998. Dipterocarp seeds were preyed on by 51 insect species (11 families), which were roughly classified into three taxonomic groups: smaller moths (Trotricidae, Pyralidae, Crambidae, Immidae, Sesiidae, and Cosmopterigidae), scolytids (Scolydae) and weevils (Curdulionidae, Apionidae, Anthribidae, and Attelabidae). Although the host-specificity of invertebrate seed predators has been assumed to be high in tropical forests, it was found that the diet ranges of some insect predators were relatively wide and overlapped one another. Most seed predators that were collected in both study years changes their diets between general flowering and seeding events. The results of cluster analyses based on the number of adult of each predator species that emerged from 100 seeds of each tree species, suggested that the dominant species was not consistent, alternating between the two years.
One of the goals for primate feeding ecology is to understand the factors that affect inter- and intra-specific variations. Therefore, a detailed description of basic feeding ecology in as many populations as possible is necessary and warrants further understanding. The black-and-white colobus (Colobus guereza) or guereza is widely distributed in Africa and is one of the well-studied colobines in terms of their feeding; they demonstrate considerable variation in their diets in response to local conditions. We studied the diet of a group of guerezas in the Kalinzu Forest, Uganda, for over 30 consecutive months using behavioral observation (4308 h in total), phenology, and vegetation surveys. A total of 31 plant species were consumed by the study group. This study group was predominantly folivorous; the majority of their feeding time was involved in feeding on young leaves (87%). However, during certain times of the year, fruits and seeds accounted for 45% of monthly feeding time. Young leaves of Celtis durandii were by far the most important food, which constituted 58% of the total feeding records. There was a significant increase in the consumption of fruits and flowers once young leaf availability was low, but their consumption of fruits did not significantly increase even when fruit availability was high. Their monthly dietary diversity increased as the number of available plants with young leaves declined, suggesting that much of the dietary diversity in the study group may be attributable to the young leaf portion of their diet. Our findings may help contribute to a better understanding of the dietary adaptations and feeding ecology of guerezas in response to local environmental conditions.
Free-living animals must make dietary choices in terms of chemical and physical properties, depending on their digestive physiology and availability of food resources. Here we comprehensively evaluated the dietary choices of proboscis monkeys (Nasalis larvatus) consuming young leaves. We analysed the data for leaf toughness and digestibility measured by an in vitro gas production method, in addition to previously reported data on nutrient composition. Leaf toughness, in general, negatively correlated with the crude protein content, one of the most important nutritional factors affecting food selection by leaf-eating primates. This result suggests that leaf toughness assessed by oral sensation might be a proximate cue for its protein content. We confirmed the importance of the leaf chemical properties in terms of preference shown by N. larvatus; leaves with high protein content and low neutral detergent fibre levels were preferred to those of the common plant species. We also found that these preferred leaves were less tough and more digestible than the alternatives. Our in vitro results also suggested that N. larvatus were little affected by secondary plant compounds. However, the spatial distribution pattern of plant species was the strongest factor explaining the selection of the preferred leaf species.