Molecular approaches have been investigated to overcome difficulties in identification and differentiation of Brucella spp. using conventional phenotypic methods. In this study, high-resolution melt (HRM) analysis was used for rapid identification and differentiation of members of Brucella genus. A total of 41 Brucella spp. isolates from human brucellosis were subjected to HRM analysis using 4 sets of primers, which identified 40 isolates as Brucella melitensis and 1 as Brucella canis. The technique utilized low DNA concentration and was highly reproducible. The assay is shown to be a useful diagnostic tool, which can rapidly differentiate Brucella up to species level.
Brucellosis is one of the most common zoonotic diseases worldwide. It can cause acute febrile illness in human and is a major health problem. Studies in human brucellosis in Malaysia is limited and so far no genotyping studies has been done on Brucella isolates. The aim of the study was to determine the genetic diversity among Brucella species isolated from human brucellosis, obtained over a 6-year period (2009-2014).
Human brucellosis is a neglected zoonotic disease and has widespread geographical distribution. Brucella melitensis has caused outbreaks and sporadic cases in Malaysia. Here, we present the whole-genome sequences of four B. melitensis strains isolated from brucellosis patients in Malaysia.
Brucellosis is a world-wide zoonotic disease with a major impact on the public health. Due to the high risk of laboratory acquired infection, limited laboratory investigations were performed on this organism, including detailed identification and susceptibility study. Brucella melitensis is the commonest aetiological agent for human brucellosis in this region. The in vitro susceptibility pattern against selected antimicrobial agents was assessed using E-test. All isolates were noted to be sensitive to all the antimicrobial agents tested except for rifampicin where elevated MIC > 1 μg/mL was noted in 30 out of 41 isolates tested.
Neorickettsia sennetsu has been described from Japan and Malaysia, causing a largely forgotten infectious mononucleosis-like disease. Because it is believed to be contracted from eating raw fish, frequently consumed in the Lao PDR, we looked for evidence of N. sennetsu among Lao patients and fish. A buffy coat from 1 of 91 patients with undifferentiated fever was positive by 16S rRNA amplification and sequencing and real-time polymerase chain reactions (PCR) targeting two N. sennetsu genes. Lao blood donors and patients with fever, hepatitis, or jaundice (N = 1,132) had a high prevalence (17%) of immunofluorescence assay IgG anti-N. sennetsu antibodies compared with 4% and 0% from febrile patients (N = 848) in Thailand and Malaysia, respectively. We found N. sennetsu DNA by PCR, for the first time, in a fish (Anabas testudineus). These data suggest that sennetsu may be an under-recognized cause of fever and are consistent with the hypothesis that it may be contracted from eating raw fish.