Displaying publications 1 - 20 of 94 in total

Abstract:
Sort:
  1. Annas S, Zamri-Saad M, Jesse FF, Zunita Z
    BMC Vet Res, 2014;10:88.
    PMID: 24721163 DOI: 10.1186/1746-6148-10-88
    Haemorrhagic septicaemia (HS) is an acute septicaemic disease of buffalo and cattle caused by Pasteurella multocida B:2 and E:2. Field outbreaks of HS are known to result in localisation of bacteria in the tonsils of surviving buffalo, confirming that animals can become carriers and the role of respiratory tract in the transmission of the disease. This report describes additional sites of localisation of P. multocida B:2 in surviving buffalo following experimental induction of HS.
  2. Annas S, Zamri-Saad M, Jesse FF, Zunita Z
    Microb Pathog, 2015 Nov;88:94-102.
    PMID: 26298001 DOI: 10.1016/j.micpath.2015.08.009
    Haemorrhagic septicaemia (HS) is an acute, septicaemic disease of cattle and buffalo of Asia and Africa caused by Pasteurella multocida B:2 or E:2. Buffaloes are believed to be more susceptible than cattle. In this study, 9 buffaloes of 8 months old were divided equally into 3 groups (Groups 1, 3, 5). Similarly, 9 cattle of 8 months old were equally divided into 3 groups (Groups 2, 4, 6). Animals of Groups 1 and 2 were inoculated with PBS while Groups 3 and 4 were inoculated subcutaneously with 10(5) cfu/ml of P. multocida B:2. Animals of Groups 5 and 6 were inoculated intranasally with the same inoculum. Both buffaloes and cattle that were inoculated subcutaneously succumbed to the infection at 16 h and 18 h, respectively. Two buffaloes that were inoculated intranasally (Group 5) succumbed at 68 h while the remaining cattle and buffaloes survived the 72-h study period. Endotoxin was detected in the blood of infected cattle (Group 4) and buffaloes (Groups 3 and 5) prior to the detection of P. multocida B:2 in the blood. The endotoxin was detected in the blood of buffaloes of Group 3 and cattle of Group 4 at 0.5 h post-inoculation while buffaloes of Group 5 and cattle of Group 6 at 1.5 h. On the other hand, bacteraemia was detected at 2.5 h in buffaloes of Group 3 and cattle of Group 4 and at 12 h in buffaloes of Group 5 and cattle of Group 6. Affected cattle and buffaloes showed lesions typical of haemorrhagic septicaemia. These included congestion and haemorrhages in the organs of respiratory, gastrointestinal and urinary tracts with evidence of acute inflammatory reactions. The severity of gross and histopathology lesions in cattle and buffalo calves that succumbed to the infection showed insignificant (p > 0.05) difference. However, inoculated buffalo and cattle that survived the infection showed significantly (p < 0.05) less severe gross and histopathological changes than those that succumbed. In general, cattle are more resistant to intranasal infection by P. multocida B:2 than buffaloes.
  3. Loh HS, Mohd-Azmi ML, Lai KY, Sheikh-Omar AR, Zamri-Saad M
    Arch Virol, 2003 Dec;148(12):2353-67.
    PMID: 14648291
    A new rat cytomegalovirus (RCMV) isolated from the placenta/uterus of a house rat (Rattus rattus diardii) was found to productively infect rat embryo fibroblast (REF) cells. The virus produced typical herpesvirus-like cytopathic effects characterized by a lytic infection. The well-known herpesvirus morphology was confirmed by electron microscopy. Its slow growth in cell culture indicated that the virus is belonging to subfamily Betaherpesvirinae. Electron microscopy techniques and immunohistochemistry confirmed the presence of herpesviral inclusion bodies and virus related particles in the cytoplasm and nucleus of infected cells. Hyperimmune serum against the Maastricht strain of RCMV revealed the virus identity in neutralization test, immunoperoxidase and immunofluorescence techniques. Despite typical characteristics of CMV, the viral genome is significantly different from that of Maastricht, English, UPM/Sg and UPM/Kn strains. The dissimilarities, which have not been reported before, had been confirmed by mean of restriction endonuclease analysis. The new RCMV strain, a virus that infects placenta and uterus of rats, has been named as ALL-03.
  4. Salleh A, Zainuddin ZZ, Mohamed Tarmizi MR, Yap KC, Zamri-Saad M
    Vet Q, 2020 Dec;40(1):250-257.
    PMID: 33045934 DOI: 10.1080/01652176.2020.1836431
    Following its capture in March 2014, an adult female Sumatran rhinoceros frequently showed profuse vaginal bleeding. An ultrasonography suggested the presence of multiple reproductive lesions, including two uterine masses which were suspected to be leiomyomas. Soon after, an open pyometra was confirmed. Later in November 2019, the patient died and necropsy confirmed the presence of two uterine masses; one was located at the cervico-uterine junction and another in the uterine body, with pyometra, and cystic endometrial hyerplasia. Based on histological, special stains, and immunohistochemical examination, it was shown that one of the masses was composed of large, ovoid and polyhedral neoplastic mesenchymal cells with eosinophilic cytoplasm and a few binucleated cells surrounded by collagen fibres. It was tested positive for SMA and vimentin, while negative for desmin, cytokeratin AE1/AE3, EMA, CD34, and S100. The other mass was composed of mesenchymal cells undergoing myxoid degeneration as evidenced by the presence of glycosaminoglycan-rich matrix. It was tested positive for SMA, vimentin, partially positive for desmin, and negative for the other markers. With the aid of human medical nomenclature, these masses were diagnosed as epithelioid leiomyoma and myxoid leiomyoma, respectively. This report provides a clinical presentation, and histologic descriptions of the two variants of leiomyomas that have not been reported in veterinary medicine.
  5. Puspitasari Y, Salleh A, Zamri-Saad M
    BMC Vet Res, 2020 Jun 09;16(1):186.
    PMID: 32517749 DOI: 10.1186/s12917-020-02415-2
    BACKGROUND: Pasteurella multocida B:2 causes haemorrhagic septicaemia in cattle and buffaloes. However, buffaloes are found to be more susceptible to the infection than cattle. Upon infection, the pathogen rapidly spread from the respiratory tract to the blood circulation within 16-72 h, causing septicaemia. So far, limited study has been conducted to evaluate the response of endothelial cells of buffalo towards P. multocida B:2 and its lipopolysaccharide (LPS). This study aimed to evaluate the ultrastructural changes in the aortic endothelium of buffaloes (BAEC) following exposure to P. multocida B:2 and its endotoxin. The endothelial cells were harvested from the aorta of healthy buffaloes and were prepared as monolayer cell cultures. The cultures were divided into 3 groups before Group 1 was inoculated with 107 cfu/ml of whole cell P. multocida B:2, Group 2 with LPS, which was extracted earlier from 107 cfu/ml of P. multocida B:2 and Group 3 with sterile cell culture medium. The cells were harvested at 0, 6, 12, 18, 24, 36, and 48 h post-inoculation for assessment of cellular changes using transmission electron microscopy.

    RESULTS: The BAEC of Groups 1 and 2 demonstrated moderate to severe endothelial lysis, suggestive of acute cellular injury. In general, severity of the ultrastructural changes increased with the time of incubation but no significant difference (p > 0.05) in the severity of the cellular changes between Groups 1 and 2 was observed in the first 18 h. The severity of lesions became significant (p 

  6. Odhah MN, Abdullah Jesse FF, Teik Chung EL, Mahmood Z, Haron AW, Mohd Lila MA, et al.
    Microb Pathog, 2019 Oct;135:103628.
    PMID: 31325572 DOI: 10.1016/j.micpath.2019.103628
    Caseous lymphadenitis is an infectious disease of almost all animals, particularly small ruminants that are caused by Corynebacterium pseudotuberculosis. The organism causes the formation of suppurative abscesses in superficial and visceral lymph nodes and in visceral organs. This current study was designed to elucidate the clinicopathological responses and PCR detection of the aetiological agent in the vital organs of goats challenged with C. pseudotuberculosis and its immunogenic mycolic acid extract. A total of twelve clinically healthy crossbred Boer female goats were divided into three groups: A, B, and C (four goats per group). Group A was inoculated intradermally with 2 ml of sterile phosphate buffered saline (PBS) pH 7 as a control group. Group B was inoculated intradermally with 2 ml of mycolic acid extract (1 g/ml), while group C was inoculated intradermally with 2 ml of 10⁹ colony-forming unit (cfu) of live C. pseudotuberculosis. The experimental animals were observed for clinical responses for 90 days post-inoculation and the clinical signs were scored according to the severity. The clinical signs observed in this study were temperature, heart rate, respiratory rate, rumen motility, enlargement of lymph nodes, and body condition score. The experimental animals were euthanised and tissue samples from different anatomical regions of the vital organs were collected in 10% buffered formalin, processed, sectioned, and stained with H&E. Results of both C. pseudotuberculosis and mycolic acid treated groups indicated a significant difference (p 
  7. Puspitasari Y, Annas S, Adza-Rina MN, Zamri-Saad M
    Microb Pathog, 2019 Jun;131:170-174.
    PMID: 30978429 DOI: 10.1016/j.micpath.2019.04.012
    Pasteurella multocida B:2 is a Gram-negative organism causing haemorrhagic septicaemia (HS) in buffaloes. It causes severe pulmonary infection, leading to infiltration of numerous macrophages and neutrophils. Despite the inflammatory response, buffaloes succumb to HS. This study aims to evaluate the in-vitro efficacy of macrophages and neutrophils of buffalo following exposure to P. multocida B:2. In-vitro infections were done using 107 cfu/ml of P. multocida B:2 for Group 1, Escherichia coli for Group 2 and Mannhaemia haemolytica A:2 for Group 3 cells. The inoculated cell cultures were harvested at 0, 30, 60 and 120 min post-exposure and the phagocytic, killing and cell death rates were determined. Both phagocytosis and killing rates of all bacteria increased over time. Phagocytosis involved between 71% and 73% neutrophils and between 60% and 64% macrophages at 120 min. Killing rate of all bacteria involved between 76% and 79% for neutrophils and between 70% and 74% for macrophages at 120 min. Death rate of neutrophils ranged between 67% in Group 3, and 88% in Group 1 at 120 min, significantly (p  0.05) than Group 2. Similar pattern was observed for death rate of macrophages. The phagocytosis and killing rates of P. multocida B:2 were similar to other bacterial species used in this study but more neutrophils and macrophages were dead following infection by P. multocida B:2 than M. haemolytica A:2.
  8. Salleh A, Zainuddin ZZ, Tarmizi RMM, Yap CK, Jeng CR, Zamri-Saad M
    Animals (Basel), 2021 Apr 20;11(4).
    PMID: 33923894 DOI: 10.3390/ani11041173
    An adult female Sumatran rhinoceros was observed with a swelling in the left infraorbital region in March 2017. The swelling rapidly grew into a mass. A radiograph revealed a cystic radiolucent area in the left maxilla. In June 2017, the rhinoceros was euthanized. At necropsy, the infraorbital mass measured 21 cm × 30 cm. Samples of the infraorbital mass, left parotid gland, and left masseter muscle were collected for histopathology (Hematoxylin & Eosin, Von Kossa, Masson's trichrome, cytokeratin AE1/AE3, EMA, p53, and S-100). Numerous neoplastic epithelial cells showing pleomorphism and infiltration were observed. Islands of dentinoid material containing ghost cells and keratin pearls were observed with the aid of the two special histochemistry stains. Mitotic figures were rarely observed. All the neoplastic odontogenic cells and keratin pearls showed an intense positive stain for cytokeratin AE1/AE3, while some keratin pearls showed mild positive stains for S-100. All samples were negative for p53 and S-100 immunodetection. The mass was diagnosed as a dentinogenic ghost cell tumor.
  9. Mazlina M, Khairani-Bejo S, Hazilawati H, Shaqinah NN, Zamri-Saad M
    Transbound Emerg Dis, 2021 Jul;68(4):2028-2038.
    PMID: 32979887 DOI: 10.1111/tbed.13850
    This study describes the pathological changes, antibody response, isolation and distribution patterns following exposure of non-pregnant goats to live Brucella melitensis. Eighteen healthy adult female goats were divided into two equal groups. Group 1 was infected via conjunctival sac with 109  cfu/ml of B. melitensis, while Group 2 was similarly exposed to sterile PBS. Serum and swabs from the eyes and vagina were collected at 5-day intervals. On days 15, 30 and 75 post-infection, 3 goats from each group were killed before the conjunctiva, ovary, oviduct, uterine horn, uterine body and vagina, the submandibular, prescapular and supramammary lymph nodes, the mammary gland, liver, spleen, urinary bladder and synovial membranes were collected for bacterial isolation and pathological study. Exposure of non-pregnant goats to B. melitensis did not produce clinical signs and gross lesions but produced mild necrosis and inflammation in the lymph nodes, the organs of reproductive tract, the mammary gland and urinary bladder. In general, microscopic lesions were most severe in the D75 goats, followed by D30 and D15 goats. Brucella melitensis was most frequent and significantly (p 
  10. Annas S, Zamri-Saad M
    Animals (Basel), 2021 Jun 24;11(7).
    PMID: 34202429 DOI: 10.3390/ani11071876
    The world is currently facing an ongoing coronavirus disease 2019 (COVID-19) pandemic. The disease is a highly contagious respiratory disease which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current control measures used by many countries include social distancing, wearing face masks, frequent hand washing, self-isolation, and vaccination. The current commercially available vaccines are injectable vaccines, although a few intranasal vaccines are in trial stages. The reported side effects of COVID-19 vaccines, perceptions towards the safety of the vaccines, and frequent mutation of the virus may lead to poor herd immunity. In veterinary medicine, attaining herd immunity is one of the main considerations in disease control, and herd immunity depends on the use of efficacious vaccines and the vaccination coverage in a population. Hence, many aerosol or intranasal vaccines have been developed to control veterinary respiratory diseases such as Newcastle disease, rinderpest, infectious bronchitis, and haemorrhagic septicaemia. Different vaccine technologies could be employed to improve vaccination coverage, including the usage of an intranasal live recombinant vaccine or live mutant vaccine. This paper discusses the potential use of intranasal vaccination strategies against human COVID-19, based on a veterinary intranasal vaccine strategy.
  11. Mazlina M, Khairani-Bejo S, Hazilawati H, Tiagarahan T, Shaqinah NN, Zamri-Saad M
    BMC Vet Res, 2018 Jun 25;14(1):203.
    PMID: 29940976 DOI: 10.1186/s12917-018-1533-x
    BACKGROUND: This study was conducted to investigate the pathological changes and distribution of B. melitensis in the urinary tract of pregnant goats following acute experimental infection. Six Jamnapari crossbred does in their third trimester of pregnancy were randomly assigned into two groups; Group 1 was uninfected control and Group 2 was inoculated conjunctival with 0.1 mL of the inoculums containing 109 cfu/mL of live B. melitensis. All does were sacrificed 30 days post-inoculation before the kidney, ureter, urinary bladder, urethra and vaginal swab were collected for isolation of B. melitensis. The same tissue samples were fixed in 10% neutral buffered formalin for hematoxylin and eosin, and immunoperoxidase staining.

    RESULTS: None of the goats showed clinical signs or gross lesions. The most consistent histopathology finding was the infiltration of mononuclear cells, chiefly the macrophages with few lymphocytes and occasionally neutrophils in all organs along the urinary tract of the infected goats of Group 2. Other histopathology findings included mild necrosis of the epithelial cells of the renal tubules, congestion and occasional haemorrhages in the various tissues. Kidneys showed the most severe lesions. Immunoperoxidase staining revealed the presence of B. melitensis within the infiltrating macrophages and the epithelium of renal tubules, ureter, urethra and urinary bladder. Most extensive distribution was observed in the urinary bladder. Brucella melitensis was successfully isolated at low concentration (3.4 × 103 cfu/g) in the various organs of the urinary tract and at high concentration (2.4 × 108 cfu/mL) in the vaginal swabs of all infected goats. Although B. melitensis was successfully isolated from the various organs of the urinary tract, it was not isolated from the urine samples that were collected from the urinary bladder at necropsy.

    CONCLUSION: This study demonstrates the presence of low concentrations of B. melitensis in the organs of urinary tract of pregnant does, resulting in mild histopathology lesions. However, B. melitensis was not isolated from the urine that was collected from the urinary bladder.

  12. Ismail MS, Siti-Zahrah A, Syafiq MR, Amal MN, Firdaus-Nawi M, Zamri-Saad M
    BMC Vet Res, 2016;12(1):194.
    PMID: 27608936 DOI: 10.1186/s12917-016-0834-1
    Streptococcosis is an important disease of tilapia throughout the world. In Malaysia, streptococcosis outbreak was commonly reported during the 3-month period of high water temperature between April and July. This study describes the duration of protection following single and double booster dose regimes against streptococcosis in tilapia using a feed-based vaccine containing formalin-killed Streptococcus agalactiae. A total of 510 tilapias of 120 ± 10 g were selected and divided into 3 groups. Fish of Group 1 were vaccinated at weeks 0 and 2 (single booster group) while fish of Group 2 were vaccinated at weeks 0, 2 and 6 (double booster group) with a feed-based vaccine against streptococcosis. Fish of Group 3 was not vaccinated. Serum samples were collected weekly to determine the antibody level while samples of eye, brain and kidney were collected for bacterial isolation. At week 10, all fish were challenged with live S. agalactiae and the survival rate was determined.
  13. Ina-Salwany MY, Al-Saari N, Mohamad A, Mursidi FA, Mohd-Aris A, Amal MNA, et al.
    J Aquat Anim Health, 2019 03;31(1):3-22.
    PMID: 30246889 DOI: 10.1002/aah.10045
    Current growth in aquaculture production is parallel with the increasing number of disease outbreaks, which negatively affect the production, profitability, and sustainability of the global aquaculture industry. Vibriosis is among the most common diseases leading to massive mortality of cultured shrimp, fish, and shellfish in Asia. High incidence of vibriosis can occur in hatchery and grow-out facilities, but juveniles are more susceptible to the disease. Various factors, particularly the source of fish, environmental factors (including water quality and farm management), and the virulence factors of Vibrio, influence the occurrence of the disease. Affected fish show weariness, with necrosis of skin and appendages, leading to body malformation, slow growth, internal organ liquefaction, blindness, muscle opacity, and mortality. A combination of control measures, particularly a disease-free source of fish, biosecurity of the farm, improved water quality, and other preventive measures (e.g., vaccination) might be able to control the infection. Although some control measures are expensive and less practical, vaccination is effective, relatively cheap, and easily implemented. In this review, the latest knowledge on the pathogenesis and control of vibriosis, including vaccination, is discussed.
  14. Jesse FFA, Odhah MN, Abba Y, Garba B, Mahmood Z, Hambali IU, et al.
    Microb Pathog, 2020 Feb;139:103852.
    PMID: 31730998 DOI: 10.1016/j.micpath.2019.103852
    BACKGROUND: Corynebacterium pseudotuberculosis biotype ovis is a bacterium that causes caseous lymphadenitis (CLA), a chronic disease of sheep and goats characterized by the formation of suppurative abscesses in superficial and visceral lymph nodes and internal organs of small ruminants. This study was designed to evaluate the reproductive hormonal changes (estrogen and progesterone) and histopathology in the reproductive organs and associated lymph nodes of does challenged with C. pseudotuberculosis biotype ovis and its immunogen; corynomycolic acid. A total of 12 healthy non-pregnant female goats were grouped into three: A, B and C consisting of four does each. Group A was intradermally inoculated with 2 mL of sterile phosphate buffered saline (PBS) pH 7 (negative control group); group B was intradermally inoculated with 2 mL of corynomycolic acid extract (CMAs), while group C was intradermally inoculated with 2 mL of 10⁹ colony-forming unit (cfu) of live C. pseudotuberculosis. Blood samples were also collected at predetermined intervals for estrogen and progesterone hormonal assays. The does were euthanized 90 days post challenge and tissue samples of the uterus, ovaries, fallopian tubes, cervix and associated lymph nodes were collected and fixed in 10% neutral buffered formalin for histopathological processing. The result showed various degrees of histopathological changes (hemorrhage, congestion, degeneration, necrosis, edema, leucocytic infiltrations) in the reproductive organs and associated lymph nodes of both inoculation groups. Increases in estrogen hormone concentration were observed in both inoculation groups in comparison to the control group. However, progesterone concentration was only increased in group C. This study highlighted that corynomycolic acid extract from C. pseudotuberculosis biotype ovis resulted in significant histopathology in the reproductive organs and associated lymph nodes of does and increase estrogen concentration.
  15. Mazlan M, Khairani-Bejo S, Hamzah H, Nasruddin NS, Salleh A, Zamri-Saad M
    Vet Q, 2021 Dec;41(1):36-49.
    PMID: 33349157 DOI: 10.1080/01652176.2020.1867328
    BACKGROUND: Brucellosis of goats is caused by Brucella melitensis. It is a re-emerging zoonotic disease in many countries due to transmission from domestic animals and wildlife such as ibex, deer and wild buffaloes.

    OBJECTIVE: To describe the pathological changes, identification and distribution of B. melitensis in foetuses of experimentally infected does.

    METHODS: Twelve female goats of approximately 90 days pregnant were divided into 4 groups. Group 1 was exposed intra-conjunctival to 100 µL of sterile PBS while goats of Groups 2, 3 and 4 were similarly exposed to 100 µL of an inoculum containing 109 CFU/mL of live B. melitensis. Goats of these groups were killed at 15, 30 and 60 days post-inoculation, respectively. Foetal fluid and tissues were collected for bacterial identification (using direct bacterial culture, PCR and immuno-peroxidase staining) and histopathological examination.

    RESULTS: Bilateral intra-conjunctival exposure of pregnant does resulted in in-utero infection of the foetuses. All full-term foetuses of group 4 were either aborted or stillborn, showing petechiations of the skin or absence of hair coat with subcutaneous oedema. The internal organs showed most severe lesions. Immune-peroxidase staining revealed antigen distribution in all organs that became most extensive in group 4. Brucella melitensis was successfully isolated from the stomach content, foetal fluid and various other organs.

    CONCLUSION: Vertical transmission of caprine brucellosis was evident causing mild to moderate lesions in different organs. The samples of choice for isolation and identification of B. melitensis are stomach content as well as liver and spleen tissue.

  16. Lawan A, Jesse FFA, Idris UH, Odhah MN, Arsalan M, Muhammad NA, et al.
    Microb Pathog, 2018 Apr;117:175-183.
    PMID: 29471137 DOI: 10.1016/j.micpath.2018.02.039
    Innumerable Escherichia coli of animal origin are identified, which are of economic significance, likewise, cattle, sheep and goats are the carrier of enterohaemorrhagic E. coli, which are less pathogenic, and can spread to people by way of direct contact and through the contamination of foodstuff or portable drinking water, causing serious illness. The immunization of ruminants has been carried out for ages and is largely acknowledged as the most economical and maintainable process of monitoring E. coli infection in ruminants. Yet, only a limited number of E. coli vaccines are obtainable. Mucosal surfaces are the most important ingress for E. coli and thus mucosal immune responses function as the primary means of fortification. Largely contemporary vaccination processes are done by parenteral administration and merely limited number of E. coli vaccines are inoculated via mucosal itinerary, due to its decreased efficacy. Nevertheless, aiming at maximal mucosal partitions to stimulate defensive immunity at both mucosal compartments and systemic site epitomises a prodigious task. Enormous determinations are involved in order to improve on novel mucosal E. coli vaccines candidate by choosing apposite antigens with potent immunogenicity, manipulating novel mucosal itineraries of inoculation and choosing immune-inducing adjuvants. The target of E. coli mucosal vaccines is to stimulate a comprehensive, effective and defensive immunity by specifically counteracting the antibodies at mucosal linings and by the stimulation of cellular immunity. Furthermore, effective E. coli mucosal vaccine would make vaccination measures stress-free and appropriate for large number of inoculation. On account of contemporary advancement in proteomics, metagenomics, metabolomics and transcriptomics research, a comprehensive appraisal of the immeasurable genes and proteins that were divulged by a bacterium is now in easy reach. Moreover, there exist marvellous prospects in this bourgeoning technologies in comprehending the host bacteria affiliation. Accordingly, the flourishing knowledge could massively guarantee to the progression of immunogenic vaccines against E. coli infections in both humans and animals. This review highlight and expounds on the current prominence of mucosal and systemic immunogenic vaccines for the prevention of E. coli infections in ruminants.
  17. Odhah MN, Jesse FFA, Lawan A, Idris UH, Marza AD, Mahmood ZK, et al.
    Microb Pathog, 2018 Apr;117:243-246.
    PMID: 29481974 DOI: 10.1016/j.micpath.2018.02.038
    Haptoglobin (Hp) and Serum Amyloid A (SAA) are a group of blood proteins whose concentrations in animals can be influenced by infection, inflammation, surgical trauma or stress. Corynebacterium pseudotuberculosis is the causative agent of caseous lymphadenitis (CLA), and Mycolic acid is a virulent factor extracted from C. pseudotuberculosis. There is a dearth of sufficient evidence on the clinical implication of MAs on the responses of Hp and SAA in goats. Therefore, this study was conducted to evaluate the potential effects of Mycolic acid (MAs) and C. pseudotuberculosis on the responses of Hp and SAA in female goats. A total of 12 healthy female goats was divided into three groups; A, B and C each comprising of 4 goats and managed for a period of three months. Group (A) was inoculated with 2 mL of sterile phosphate buffered saline (as a negative control group) intradermally, while group (B) and (C) were inoculated intradermally with 2 ml each of mycolic acid and 1‏ × 109 cfu of active C. pseudotuberculosis respectively. The result of the study showed that the Hp concentration in goats inoculated with C. pseudotuberculosis was significantly increased up to 7-fold (1.17 ± 0.17 ng/L) while MAs showed a 3-fold increased (0.83 ± 0.01 ng/L) compared with the control. Whereas SAA concentration in C. pseudotuberculosis and MAs groups showed a significant 3-fold (17.85 ± 0.91 pg/mL) and 2-fold (10.97 ± 0.71 pg/mL) increased compared with the control. This study concludes that inoculation of C. pseudotuberculosis and MAs have significant effects on Hp and SAA levels, which indicates that MAs could have a role in the pathogenesis of caseous lymphadenitis.
  18. Ismail MS, Syafiq MR, Siti-Zahrah A, Fahmi S, Shahidan H, Hanan Y, et al.
    Fish Shellfish Immunol, 2017 Jan;60:21-24.
    PMID: 27864157 DOI: 10.1016/j.fsi.2016.11.040
    A tilapia farm experiencing endemic streptococcosis was selected to study the effect of vaccination with a feed-based vaccine on naturally ocurring streptococcosis. A total of 9000 red tilapia, Oreochromis niloticus × Oreochromis mossambicus of 100 ± 20 g were divided into 9 cages. Fish of Group 1 in cages 1, 2 and 3 were not vaccinated. Group 2 in cages 4, 5 and 6 were vaccinated on days 0 and 14 (single booster) while Group 3 in cages 7, 8 and 9 were vaccinated on days 0, 14 and 42 (double booster). Vaccination was done by oral administration of the feed-based bacterin vaccine at 4% bodyweight. Samples of serum for antibody study and the brain, eyes and kidney for bacterial isolation were collected at 14-day intervals. The study was carried out during the critical months between April and June. Following vaccination and booster, there was significant (p 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links