A study of kaolin addition in polypropylene (PP-kaolin) melt was carried out to characterize its flow behaviour and viscoelasticity at different temperatures. The compound of 20 wt% kaolin was prepared by melt mixing using two roll-mill heated at 185°C, while the compounded composites were put through a single screw extruder to evaluate its melt flow properties. The prepared PPKaolin composites exhibited a shear thinning behaviour and appeared to be strongly dependent on temperature. Moreover, it was also found that the power law index was constantly increased as the temperature increased. Meanwhile, a similar trend was observed for swelling ratio, whereby it also increased with increasing temperature. It was also observed that changes in the die temperatures would result in the formation of obvious bubble like surface morphology, and it became more prominent when the temperature was lowered.
This research was carried out to study the effects of kenaf loading and alkaline treatment on tensile properties, density,
thermal and morphological properties of kenaf filled natural rubber latex foam (NRLF). Samples were prepared using a
Dunlop method. From the results, increasing loading of kenaf reduced the tensile strength and elongation at break for
both samples, treated and untreated kenaf filled NRLF. Meanwhile, modulus at 100% elongation and density increased
with an increased in kenaf loading. Samples with treated kenaf showed higher tensile strength, modulus at 100%
elongation and density but low in elongation at break as compared with samples with untreated kenaf. Thermal study
by using thermogravimetric analysis (TGA) showed that thermal stability reduced with increased in kenaf loading for
both samples. Samples with treated kenaf have higher thermal stability compared with samples of untreated kenaf. The
filler-matrix interaction and the pores size variation of both samples was clearly seen in the micrograph images by using
scanning electron microscope (SEM).