Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Airuddin SS, Halim AS, Wan Sulaiman WA, Kadir R, Nasir NAM
    Biomedicines, 2021 Nov 05;9(11).
    PMID: 34829853 DOI: 10.3390/biomedicines9111624
    Stem cells have been widely used for treating disease due to the various benefits they offer in the curing process. Several treatments using stem cells have undergone clinical trials, such as cell-based therapies for heart disease, sickle cell disease, thalassemia, etc. Adipose-derived stem cells are some of the many mesenchymal stem cells that exist in our body that can be harvested from the abdomen, thighs, etc. Adipose tissue is easy to harvest, and its stem cells can be obtained in higher volumes compared to stem cells harvested from bone marrow, for which a more invasive technique is required with a smaller volume obtained. Many scientists have expressed interest in investigating the role of adipose-derived stem cells in treating disease since their use was first described. This is due to these stem cells' ability to differentiate into multiple lineages and secrete a variety of growth factors and proteins. Previous studies have found that the hormones, cytokines, and growth factors contained in adipose tissue play major roles in the metabolic regulation of adipose tissue, as well as in energy balance and whole-body homeostasis through their endocrine, autocrine, and paracrine functions. These are thought to be important contributors to the process of tissue repair and regeneration. However, it remains unclear how effective and safe ADSCs are in treating diseases. The research that has been carried out to date is in order to investigate the impact of ADSCs in disease treatment, as described in this review, to highlight its "trick or treat" effect in medical treatment.
  2. Lee YT, Tan YJ, Oon CE
    Biomedicines, 2023 Nov 15;11(11).
    PMID: 38002059 DOI: 10.3390/biomedicines11113059
    Growing evidence has highlighted that mitochondrial dysfunction contributes to drug-induced toxicities and leads to drug attrition and post-market withdrawals. The acetylation or deacetylation of mitochondrial proteins can affect mitochondrial functions as the cells adapt to various cellular stresses and other metabolic challenges. SIRTs act as critical deacetylases in modulating mitochondrial function in response to drug toxicity, oxidative stress, reactive oxygen species (ROS), and energy metabolism. We previously showed that a recently characterised SIRT inhibitor (BZD9L1) is non-toxic in rodents in a short-term toxicity evaluation. However, the impact of BZD9L1 on mitochondrial function is unknown. This work aims to determine the effects of BZD9L1 on mitochondrial function in human normal liver and kidney-derived cell lines using the Agilent Seahorse Cell Mito Stress Test to complement our short-term toxicity evaluations in vivo. The Mito Stress assay revealed that BZD9L1 could potentially trigger oxidative stress by inducing ROS, which promotes proton leak and reduces coupling efficiency in liver-derived THLE cells. However, the same was not observed in human kidney-derived HEK293 cells. Interestingly, BZD9L1 had no impact on SIRT3 protein expression in both cell lines but affected SOD2 and its acetylated form at 72 h in THLE cells, indicating that BZD9L1 exerted its effect through SIRT3 activity rather than protein expression. In contrast, BZD9L1 reduced SIRT1 protein expression and impacted the p53 protein differently in both cell lines. Although BZD9L1 did not affect the spare respiratory capacity in vitro, these findings call for further validation of mitochondrial function through assessment of other mitochondrial parameters to evaluate the safety of BZD9L1.
  3. Shamhari A', Abd Hamid Z, Budin SB, Shamsudin NJ, Taib IS
    Biomedicines, 2021 Nov 22;9(11).
    PMID: 34829973 DOI: 10.3390/biomedicines9111744
    BPA is identified as an endocrine-disrupting chemical that deteriorates the physiological function of the hormones of the male reproductive system. Bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) are actively explored as substitutes for BPA and are known as BPA analogues in most manufacturing industries. These analogues may demonstrate the same adverse effects as BPA on the male reproductive system; however, toxicological data explaining the male reproductive hormones' physiological functions are still limited. Hence, this mini-review discusses the effects of BPA and its analogues on the physiological functions of hormones in the male reproductive system, focusing on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, and spermatogenesis outcomes. The BPA analogues mainly show a similar negative effect on the hormones' physiological functions, proven by alterations in the HPG axis and steroidogenesis via activation of the aromatase activity and reduction of spermatogenesis outcomes when compared to BPA in in vitro and in vivo studies. Human biomonitoring studies also provide significant adverse effects on the physiological functions of hormones in the male reproductive system. In conclusion, BPA and its analogues deteriorate the physiological functions of hormones in the male reproductive system as per in vitro, in vivo, and human biomonitoring studies.
  4. Surien O, Masre SF, Basri DF, Ghazali AR
    Biomedicines, 2022 Oct 28;10(11).
    PMID: 36359262 DOI: 10.3390/biomedicines10112743
    Skin squamous cell carcinoma (SCC) is a type of non-melanoma skin cancer. Pterostilbene is a natural compound proven to exhibit various pharmacological properties, including chemo-preventive effects. This study aimed to explore the chemo-preventive effect of oral pterostilbene during initiation, promotion or continuous on multistage skin SCC mouse models induced by 7,12-Dimethylbenz(a)anthracene (DMBA)/12-O-Tetradecanoylphorbol-13-acetate (TPA). The experimental design consists of five groups of female Institute of Cancer Research (ICR) mice, with two control groups of vehicle and cancer. Three oral pterostilbene groups consisted of orally administered pterostilbene during initiation, promotion, or continuously. Oral pterostilbene significantly reduced the number and volume of tumours. Oral pterostilbene demonstrated less severe skin histology changes compared to the cancer control group, with less pleomorphic in the cells and nuclei, and the basement membrane remained intact. Our results showed fewer invasive tumours in oral PT-treated groups than in cancer groups that displayed mitotic bodies, highly pleomorphic cells and nuclei, and basement membrane invasion. The cell proliferation marker (Ki-67) was reduced in oral pterostilbene-treated groups. Overall, oral pterostilbene is a promising chemo-preventive intervention due to its anti-initiation and anti-promotion on skin carcinogenesis. Thus, the potential molecular mechanisms of oral pterostilbene chemo-prevention agent should be explored.
  5. Zhang Q, Teow JY, Kerishnan JP, Abd Halim AA, Chen Y
    Biomedicines, 2023 May 16;11(5).
    PMID: 37239129 DOI: 10.3390/biomedicines11051458
    Oral squamous cell carcinoma (OSCC) is a prevalent type of head and neck cancer, ranked as the sixth most common cancer worldwide, accounting for approximately 300,000 new cases and 145,000 deaths annually. Early detection using biomarkers significantly increases the 5-year survival rate of OSCC by up to 80-90%. Clusterin (CLU), also known as apolipoprotein J, is a sulfated chaperonic glycoprotein expressed in all tissues and human fluids and has been reported to be a potential biomarker of OSCC. CLU has been implicated as playing a vital role in many biological processes such as apoptosis, cell cycle, etc. Abnormal CLU expression has been linked with the development and progression of cancers. Despite the fact that there are many studies that have reported the involvement of CLU and its isoforms in OSCC, the exact roles of CLU and its isoforms in OSCC carcinogenesis have not been fully explored. This article aims to provide a comprehensive review of the current understanding of CLU structure and genetics and its correlation with OSCC tumorigenesis to better understand potential diagnostic and prognostic biomarker development. The relationship between CLU and chemotherapy resistance in cancer will also be discussed to explore the therapeutic application of CLU and its isoforms in OSCC.
  6. Siddig A, Wan Abdul Rahman WF, Mohd Nafi SN, Sulong S, Yahya MM, Al-Astani Tengku Din TAD, et al.
    Biomedicines, 2023 Jan 12;11(1).
    PMID: 36672708 DOI: 10.3390/biomedicines11010200
    Background: Breast cancer developed at a young age (≤45 years) is hypothesized to have unique biology; however, findings in this field are controversial. Methods: We compared the whole transcriptomic profile of young vs. old-age breast cancer using DNA microarray. RNA was extracted from 13 fresh estrogen receptor (ER)-positive primary breast cancer tissues of untreated patients (7 = young age ≤45 years and 6 = old age ≥55 years). In silico validation for the differentially expressed genes (DEGs) by young-age patients was conducted using The Cancer Genome Atlas (TCGA) database. Next, we analyzed the protein expression encoded by two of the significantly down-regulated genes by young-age patients, Glycine N-acyltransferase-like 1 (GLYATL-1) and Ran-binding protein 3 like (RANBP3L), using immunohistochemical analysis in an independent cohort of 56 and 74 ER-positive pre-therapeutic primary breast cancer tissues, respectively. Results: 12 genes were significantly differentially expressed by young-age breast cancers (fold change >2 or <2- with FDR p-value < 0.05). TCGA data confirmed the differential expression of six genes. Protein expression analysis of GLYATL-1 and RANBP3L did not show heterogeneous expression between young and old-age breast cancer tissues. Loss of expression of GLYATL-1 was significantly (p-value 0.005) associated with positive lymph node status. Higher expression of RANBP3L was significantly associated with breast cancers with lower histopathological grades (p-value 0.038). Conclusions: At the transcriptomic level, breast cancer developed in young and old age patients seems homogenous. The variation in the transcriptomic profiles can be attributed to the other clinicopathological characteristics rather than the age of the patient.
  7. Noh IC, Ahmad I, Suraiya S, Musa NF, Nurul AA, Ruzilawati AB
    Biomedicines, 2021 Aug 30;9(9).
    PMID: 34572300 DOI: 10.3390/biomedicines9091115
    Cytokines play an important role in modulating inflammation during viral infection, including hepatitis C virus (HCV) infection. Genetic polymorphisms of cytokines can alter the immune response against this infection. The objective of this study was to investigate the possible association between chronic hepatitis C virus infection susceptibility and cytokine gene polymorphism for interleukin-10 (IL-10) rs1800896 and rs1800871, interleukin 6 (IL-6) rs1800795, TNF-α rs1800629, and TGF-β1 rs1800471 in Malay male drug abusers. The study was conducted on 76 HCV-positive (HP) male drug abusers and 40 controls (HCV-negative male drug abusers). We found that there were significant differences in the frequencies of genotype for IL-10 rs1800871 (p = 0.0386) and at the allelic level for IL-10 rs1800896 A versus G allele (p = 0.0142) between the HP group and the control group. However, there were no significant differences in gene polymorphism in interleukin 6 rs1800795, TNF-α rs1800629 and TGF-β1 rs1800471. These findings suggest significant associations between gene polymorphism for IL-10 rs1800871, IL-10 rs1800896 (at the allelic level) and susceptibility to HCV infection among Malay male drug abusers.
  8. Nik Kamarudin NAA, Mawang CI, Ahamad M
    Biomedicines, 2023 Oct 18;11(10).
    PMID: 37893191 DOI: 10.3390/biomedicines11102818
    Borrelia burgdorferi sensu lato (B. burgdorferi s.l.), which is predominantly spread by ticks, is the cause of Lyme disease (LD), also known as Lyme borreliosis, one of the zoonotic diseases affecting people. In recent years, LD has become more prevalent worldwide, even in countries with no prior records. Currently, Lyme Borrelia detection is achieved through nucleic acid amplification, antigen detection, microscopy, and in vitro culture. Nevertheless, these methods lack sensitivity in the early phase of the disease and, thus, are unable to confirm active infection. This review briefly discusses the existing direct detection methods of LD. Furthermore, this review also introduces the use of aptamer technology integrated with biosensor platforms to detect the Borrelia antigen. This aptamer technology could be explored using other biosensor platforms targeting whole Borrelia cells or specific molecules to enhance Borrelia detection in the future.
  9. Salleh A, Mustafa N, Teow YH, Fatimah MN, Khairudin FA, Ahmad I, et al.
    Biomedicines, 2022 Mar 31;10(4).
    PMID: 35453566 DOI: 10.3390/biomedicines10040816
    Tissue engineering products have grown rapidly as an alternative solution available for chronic wound and burn treatment. However, some drawbacks include additional procedures and a lack of antibacterial properties that can impair wound healing, which are issues that need to be tackled effectively for better wound recovery. This study aimed to develop a functionalized dual-layered hybrid biomatrix composed of collagen sponge (bottom layer) to facilitate cell proliferation and adhesion and gelatin/cellulose hydrogel (outer layer) incorporated with graphene oxide and silver nanoparticles (GC-GO/AgNP) to prevent possible external infections post-implantation. The bilayer hybrid scaffold was crosslinked with 0.1% (w/v) genipin for 6 h followed by advanced freeze-drying technology. Various characterisation parameters were employed to investigate the microstructure, biodegradability, surface wettability, nanoparticles antibacterial activity, mechanical strength, and biocompatibility of the bilayer bioscaffold towards human skin cells. The bilayer bioscaffold exhibited favourable results for wound healing applications as it demonstrated good water uptake (1702.12 ± 161.11%), slow rate of biodegradation (0.13 ± 0.12 mg/h), and reasonable water vapour transmission rate (800.00 ± 65.85 gm−2 h−1) due to its porosity (84.83 ± 4.48%). The biomatrix was also found to possess hydrophobic properties (48.97 ± 3.68°), ideal for cell attachment and high mechanical strength. Moreover, the hybrid GO-AgNP promoted antibacterial properties via the disk diffusion method. Finally, biomatrix unravelled good cellular compatibility with human dermal fibroblasts (>90%). Therefore, the fabricated bilayer scaffold could be a potential candidate for skin wound healing application.
  10. Abdul Ghani N', Razali RA, Chowdhury SR, Fauzi MB, Bin Saim A, Ruszymah BHI, et al.
    Biomedicines, 2022 Dec 09;10(12).
    PMID: 36551960 DOI: 10.3390/biomedicines10123203
    A key event in wound healing is re-epithelialisation, which is mainly regulated via paracrine signalling of cytokines, chemokines, and growth factors secreted by fibroblasts. Fibroblast-secreted factors can be collected from the used culture medium, known as dermal fibroblast conditioned medium (DFCM). The goal of this study was to optimise the culture condition to acquire DFCM and evaluate its effect on keratinocyte attachment, proliferation, migration, and differentiation. Confluent fibroblasts were cultured with serum-free keratinocyte-specific (DFCM-KM) and fibroblast-specific (DFCM-FM) medium at different incubation times (Days 1, 2, and 3). DFCM collected after 3 days of incubation (DFCM-KM-3 and DFCM-FM-3) contained a higher protein concentration compared to other days. Supplementation of DFCM-KM-3 enhanced keratinocyte attachment, while DFCM-FM-3 significantly increased the keratinocyte wound-healing rate, with an increment of keratinocyte area and collective cell migration, which was distinctly different from DFCM-KM-3 or control medium. Further analysis confirmed that the presence of calcium at higher concentrations in DFCM-FM facilitated the changes. The confluent dermal fibroblasts after 3 days of incubation with serum-free culture medium produced higher proteins in DFCM, resulting in enhanced in vitro re-epithelialisation. These results suggest that the delivery of DFCM could be a potential treatment strategy for wound healing.
  11. Eid EEM, Alshehade SA, Almaiman AA, Kamran S, Lee VS, Alshawsh MA
    Biomedicines, 2023 Jul 04;11(7).
    PMID: 37509531 DOI: 10.3390/biomedicines11071891
    Leukemia, a condition characterized by the abnormal proliferation of blood cells, poses significant challenges in cancer treatment. Thymoquinone (TQ), a bioactive compound derived from black seed, has demonstrated anticancer properties, including telomerase inhibition and the induction of apoptosis. However, TQ's poor solubility and limited bioavailability hinder its clinical application. This study explored the use of Sulfobutylether-β-cyclodextrin (SBE-β-CD), a cyclodextrin derivative, to enhance the solubility and stability of TQ for leukemia treatment. SBE-β-CD offers low hemolytic activity and has been successfully employed in controlled drug release systems. The study investigated the formation of inclusion complexes between TQ and SBE-β-CD and evaluated their effects on leukemia cell growth and telomerase activity. The results indicated that the TQ/SBE-β-CD complex exhibited improved solubility and enhanced cytotoxic effects against K-562 leukemia cells compared to TQ alone, suggesting the potential of SBE-β-CD as a drug delivery system for TQ. The annexin V-FITC assay demonstrated increased apoptosis, while the qPCR quantification assay revealed reduced telomerase activity in leukemia cells treated with TQ/SBE-β-CD, supporting its anti-leukemic potential. The molecular docking analysis indicated a strong binding affinity between TQ and telomerase. However, further research is needed to optimize the apoptotic effects and minimize necrosis induction. In conclusion, TQ/SBE-β-CD shows promise as a novel strategy for leukemia treatment by inhibiting telomerase and enhancing the cytotoxic effects of TQ, offering a potential solution to overcome the limitations of TQ's poor solubility and bioavailability.
  12. Rajasegaran Y, Azlan A, Rosli AA, Yik MY, Kang Zi K, Yusoff NM, et al.
    Biomedicines, 2021 Oct 19;9(10).
    PMID: 34680611 DOI: 10.3390/biomedicines9101494
    MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
  13. Wong SK, Ramli FF, Ali A, Ibrahim N'
    Biomedicines, 2022 Dec 13;10(12).
    PMID: 36551995 DOI: 10.3390/biomedicines10123239
    Metabolic syndrome (MetS) refers to a cluster of metabolic dysregulations, which include insulin resistance, obesity, atherogenic dyslipidemia and hypertension. The complex pathogenesis of MetS encompasses the interplay between environmental and genetic factors. Environmental factors such as excessive nutrients and sedentary lifestyle are modifiable and could be improved by lifestyle modification. However, genetic susceptibility to MetS, a non-modifiable factor, has attracted the attention of researchers, which could act as the basis for future diagnosis, prognosis, and therapy for MetS. Several cholesterol-related genes associated with each characteristic of MetS have been identified, such as apolipoprotein, lipoprotein lipase (LPL), cholesteryl ester transfer protein (CETP) and adiponectin. This review aims to summarize the genetic information of cholesterol-related genes in MetS, which may potentially serve as biomarkers for early prevention and management of MetS.
  14. Perveen I, Bukhari B, Najeeb M, Nazir S, Faridi TA, Farooq M, et al.
    Biomedicines, 2023 Jul 04;11(7).
    PMID: 37509530 DOI: 10.3390/biomedicines11071892
    Molecular hydrogen is renowned as an odorless and colorless gas. The recommendations developed by China suggest that the inhalation of hydrogen molecules is currently advised in COVID-19 pneumonia treatment. The therapeutic effects of molecular hydrogens have been confirmed after numerous clinical trials and animal-model-based experiments, which have expounded that the low molecular weight of hydrogen enables it to easily diffuse and permeate through the cell membranes to produce a variety of biological impacts. A wide range of both chronic and acute inflammatory diseases, which may include sepsis, pancreatitis, respiratory disorders, autoimmune diseases, ischemia-reperfusion damages, etc. may be treated and prevented by using it. H2 can primarily be inoculated through inhalation, by drinking water (which already contains H2), or by administrating the injection of saline H2 in the body. It may play a pivotal role as an antioxidant, in regulating the immune system, in anti-inflammatory activities (mitochondrial energy metabolism), and cell death (apoptosis, pyroptosis, and autophagy) by reducing the formation of excessive reactive O2 species and modifying the transcription factors in the nuclei of the cells. However, the fundamental process of molecular hydrogen is still not entirely understood. Molecular hydrogen H2 has a promising future in therapeutics based on its safety and possible usefulness. The current review emphasizes the antioxidative, anti-apoptotic, and anti-inflammatory effects of hydrogen molecules along with the underlying principle and fundamental mechanism involved, with a prime focus on the coronavirus disease of 2019 (COVID-19). This review will also provide strategies and recommendations for the therapeutic and medicinal applications of the hydrogen molecule.
  15. Ali I, Rasheed MA, Cavalu S, Rahim K, Ijaz S, Yahya G, et al.
    Biomedicines, 2023 Mar 06;11(3).
    PMID: 36979773 DOI: 10.3390/biomedicines11030793
    The pandemic outbreak of human coronavirus is a global health concern that affects people of all ages and genders, but there is currently still no effective, approved and potential drug against human coronavirus, as many other coronavirus vaccines have serious side effects while the development of small antiviral inhibitors has gained tremendous attention. For this research, HE was used as a therapeutic target, as the spike protein displays a high binding affinity for both host ACE2 and viral HE glycoprotein. Molecular docking, pharmacophore modelling and virtual screening of 38,000 natural compounds were employed to find out the best natural inhibitor against human coronaviruses with more efficiency and fewer side effects and further evaluated via MD simulation, PCA, DCCR and MMGBSA. The lead compound 'Calceolarioside B' was identified on the basis of pharmacophoric features which depict favorable binding (ΔGbind -37.6799 kcal/mol) with the HE(5N11) receptor that describes positive correlation movements in active site residues with better stability, a robust H-bond network, compactness and reliable ADMET properties. The Fraxinus sieboldiana Blume plant containing the Calceolarioside B compound could be used as a potential inhibitor that shows a higher efficacy and potency with fewer side effects. This research work will aid investigators in the testing and identification of chemicals that are effective and useful against human coronavirus.
  16. Chan YT, Cheong HC, Tang TF, Rajasuriar R, Cheng KK, Looi CY, et al.
    Biomedicines, 2022 Nov 04;10(11).
    PMID: 36359329 DOI: 10.3390/biomedicines10112809
    The progressive decline of CD8+ cytotoxic T cells in human immunodeficiency virus (HIV)-infected patients due to infection-triggered cell exhaustion and cell death is significantly correlated with disease severity and progression into the life-threatening acquired immunodeficiency syndrome (AIDS) stage. T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. This review highlights the interplay between immune checkpoint molecules and glucose metabolism that contributes to T cell exhaustion in the context of chronic HIV infection, which could deliver an insight into the rational design of a novel therapeutic strategy.
  17. Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, et al.
    Biomedicines, 2022 May 24;10(6).
    PMID: 35740242 DOI: 10.3390/biomedicines10061219
    Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
  18. Tabassum A, Ali A, Zahedi FD, Ismail NAS
    Biomedicines, 2023 May 14;11(5).
    PMID: 37239112 DOI: 10.3390/biomedicines11051441
    Vitamin D plays a role in regulating the immune system and can be linked to the alteration of the gut microbiome, which leads to several immunological diseases. This systematic review aims to explore the relationship between Vitamin D and children's gut microbiome, as well as its impact towards the immune system. We have systematically collated relevant studies from different databases concerning changes in the gut microbiome of children from infants to 18 years old associated with Vitamin D and the immunological pathways. The studies utilized 16S rRNA sequencing analysis of fecal matter with or without Vitamin D supplementation and Vitamin D levels. Ten studies were selected for the review, among which eight studies showed significant alterations in the gut microbiome related to Vitamin D supplementation or Vitamin D levels. The taxa of the phylum Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria are the most altered in these studies. The alteration of the taxa alters the Th1 and Th2 pathways and changes the immune response. We will discuss how Vitamin D may contribute to the activation of immune pathways via its effects on intestinal barrier function, microbiome composition, and/or direct effects on immune responses. In conclusion, the studies examined in this review have provided evidence that Vitamin D levels may have an impact on the composition of children's gut microbiomes.
  19. Iyaswamy A, Lu K, Guan XJ, Kan Y, Su C, Liu J, et al.
    Biomedicines, 2023 Jul 21;11(7).
    PMID: 37509695 DOI: 10.3390/biomedicines11072056
    Bacterial Extracellular Vesicles (BEVs) possess the capability of intracellular interactions with other cells, and, hence, can be utilized as an efficient cargo for worldwide delivery of therapeutic substances such as monoclonal antibodies, proteins, plasmids, siRNA, and small molecules for the treatment of neurodegenerative diseases (NDs). BEVs additionally possess a remarkable capacity for delivering these therapeutics across the blood-brain barrier to treat Alzheimer's disease (AD). This review summarizes the role and advancement of BEVs for NDs, AD, and their treatment. Additionally, it investigates the critical BEV networks in the microbiome-gut-brain axis, their defensive and offensive roles in NDs, and their interaction with NDs. Furthermore, the part of BEVs in the neuroimmune system and their interference with ND, as well as the risk factors made by BEVs in the autophagy-lysosomal pathway and their potential outcomes on ND, are all discussed. To conclude, this review aims to gain a better understanding of the credentials of BEVs in NDs and possibly discover new therapeutic strategies.
  20. Masri S, Maarof M, Mohd NF, Hiraoka Y, Tabata Y, Fauzi MB
    Biomedicines, 2022 Oct 20;10(10).
    PMID: 36289912 DOI: 10.3390/biomedicines10102651
    The irregular shape and depth of wounds could be the major hurdles in wound healing for the common three-dimensional foam, sheet, or film treatment design. The injectable hydrogel is a splendid alternate technique to enhance healing efficiency post-implantation via injectable or 3D-bioprinting technologies. The authentic combination of natural and synthetic polymers could potentially enhance the injectability and biocompatibility properties. Thus, the purpose of this study was to characterise a hybrid gelatin−PVA hydrogel crosslinked with genipin (GNP; natural crosslinker). In brief, gelatin (GE) and PVA were prepared in various concentrations (w/v): GE, GPVA3 (3% PVA), and GPVA5 (5% PVA), followed by a 0.1% (w/v) genipin (GNP) crosslink, to achieve polymerisation in three minutes. The physicochemical and biocompatibility properties were further evaluated. GPVA3_GNP and GPVA5_GNP with GNP demonstrated excellent physicochemical properties compared to GE_GNP and non-crosslinked hydrogels. GPVA5_GNP significantly displayed the optimum swelling ratio (621.1 ± 93.18%) and excellent hydrophilicity (38.51 ± 2.58°). In addition, GPVA5_GNP showed an optimum biodegradation rate (0.02 ± 0.005 mg/h) and the highest mechanical strength with the highest compression modulus (2.14 ± 0.06 MPa). In addition, the surface and cross-sectional view for scanning electron microscopy (SEM) displayed that all of the GPVA hydrogels have optimum average pore sizes (100−199 μm) with interconnected pores. There were no substantial changes in chemical analysis, including FTIR, XRD, and EDX, after PVA and GNP intervention. Furthermore, GPVA hydrogels influenced the cell biocompatibility, which successfully indicated >85% of cell viability. In conclusion, gelatin−PVA hydrogels crosslinked with GNP were proven to have excellent physicochemical, mechanical, and biocompatibility properties, as required for potential bioinks for chronic wound healing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links