Displaying publications 1 - 20 of 133 in total

  1. Zzaman W, Bhat R, Yang TA, Easa AM
    J Sci Food Agric, 2017 Oct;97(13):4429-4437.
    PMID: 28251656 DOI: 10.1002/jsfa.8302
    BACKGROUND: Roasting is one of the important unit operations in the cocoa-based industries in order to develop unique flavour in products. Cocoa beans were subjected to roasting at different temperatures and times using superheated steam. The influence of roasting temperature (150-250°C) and time (10-50 min) on sugars, free amino acids and volatile flavouring compounds were investigated.

    RESULTS: The concentration of total reducing sugars was reduced by up to 64.61, 77.22 and 82.52% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. The hydrophobic amino acids were reduced up to 29.21, 36.41 and 48.87% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. A number of pyrazines, esters, aldehydes, alcohols, ketones, carboxyl acids and hydrocarbons were detected in all the samples at different concentration range. Formation of the most flavour active compounds, pyrazines, were the highest concentration (2.96 mg kg-1 ) at 200°C for 10 min.

    CONCLUSION: The superheated steam roasting method achieves the optimum roasting condition within a short duration Therefore, the quality of cocoa beans can be improved using superheated steam during the roasting process. © 2017 Society of Chemical Industry.

  2. Zulkifli N, Hashim N, Harith HH, Mohamad Shukery MF, Onwude DI
    J Sci Food Agric, 2021 Nov 20.
    PMID: 34802158 DOI: 10.1002/jsfa.11669
    BACKGROUND: Evaluation of the quality properties of papaya becomes essential due to the acceleration of the fruit shelf-life senescence and the deterioration factor of the expected postharvest operations. In this study, the colour features in RGB, normalised RGB, HSV and L*a*b* channels were extracted and correlated with mechanical properties, moisture content (MC), total soluble solids (TSS), and pH for the prediction of quality properties at five ripening stages of papaya (R1- R5).

    RESULTS: The mean values of colour features in RGB R m , G m , B m , normalised RGB R nm , G nm , B nm HSV H m , S m , V m , and L*a*b* L m , a m , b m were the best estimator for predicting TSS with R2 ≥ 0.90. All colour channels also showed satisfactory accuracies of R2 ≥ 0.80 in predicting the bioyield force, apparent modulus and mean force. The highest average classification accuracy was obtained using LDA with an average accuracy of more than 82%. The study showed that LDA, LSVM, QDA and QSVM obtained the correct classification of up to 100% for R5, whereas R1, R2, R3 and R4 gave classification accuracies in the range between 83.75-91.85%, 85.6-90.25%, 85.75-90.85% and 77.35-87.15% respectively. This indicates R5 colour information was obviously different from R1-R4. The mean values of the HSV channel indicated the best performance to predict the ripening stages of papaya, compared to RGB, normalised RGB and L*a*b*channels, with an average classification accuracy of more than 80%.

    CONCLUSION: The study has shown the versatility of a machine vision system in predicting the quality changes in papaya. The results showed that the machine vision system can be used to predict the ripening stages as well as classifying the fruits into different ripening stages of papayas. This article is protected by copyright. All rights reserved.

  3. Zhou Y, Sun Y, Pan D, Xia Q, Zhou C
    J Sci Food Agric, 2023 Aug 30;103(11):5412-5421.
    PMID: 37038882 DOI: 10.1002/jsfa.12616
    BACKGROUND: Goose meat is rough and embedded with dense connective tissue, impairing protein solubility. Therefore, to improve the functional properties of goose myofibrillar protein (GMP), ultrasound was used to assist the phosphorylation of GMP.

    RESULTS: The fact that GMP attached covalently with the phosphate group of sodium tripolyphosphate (GMP-STP) was disclosed directly by Fourier transform infrared spectroscopy. Furthermore, ultrasound significantly improved the hydrophobicity and solubility of GMP-STP, which could be attributed to the conversion of α-helix to β-sheet, β-turns, and random coils by sonication. The spatial stabilization of the protein phosphorylation process was boosted by ultrasound, making the droplets more dispersed, and thus an improvement in the functional properties of GMP-STP was observed. Water-holding capacity, oil-binding capacity, and emulsifying and foaming properties were best at an ultrasound power of 400 W.

    CONCLUSION: Ultrasound-assisted phosphorylation has great potential to modulate the structure-function relationship of proteins. © 2023 Society of Chemical Industry.

  4. Zamzuri NA, Abd-Aziz S
    J Sci Food Agric, 2013 Feb;93(3):429-38.
    PMID: 23208984 DOI: 10.1002/jsfa.5962
    This review provides an overview of biovanillin production from agro wastes as an alternative food flavour. Biovanillin is one of the widely used flavour compounds in the foods, beverages and pharmaceutical industries. An alternative production approach for biovanillin as a food flavour is hoped for due to the high and variable cost of natural vanillin as well as the limited availability of vanilla pods in the market. Natural vanillin refers to the main organic compound that is extracted from the vanilla bean, as compared to biovanillin, which is produced biologically by microorganisms from a natural precursor such as ferulic acid. Biovanillin is also reviewed as a potential bioflavour produced by microbial fermentation in an economically feasible way in the near future. In fact, we briefly discuss natural, synthetic and biovanillin and the types of agro wastes that are useful as sources for bioconversion of ferulic acid into biovanillin. The subsequent part of the review emphasizes the current application of vanillin as well as the utilization of biovanillin as an alternative food flavour. The final part summarizes biovanillin production from agro wastes that could be of benefit as a food flavour derived from potential natural precursors.
  5. Yusof NA, Isha A, Ismail IS, Khatib A, Shaari K, Abas F, et al.
    J Sci Food Agric, 2015 Sep;95(12):2533-43.
    PMID: 25371390 DOI: 10.1002/jsfa.6987
    The metabolite changes in three germplasm accessions of Malaysia Andrographis paniculata (Burm. F.) Nees, viz. 11265 (H), 11341 (P) and 11248 (T), due to their different harvesting ages and times were successfully evaluated by attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy and translated through multivariate data analysis of principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). This present study revealed the feasibility of ATR-FTIR in detecting the trend changes of the major metabolites - andrographolide and neoandrographolide - functional groups in A. paniculata leaves of different accessions. The harvesting parameter was set at three different ages of 120, 150 and 180 days after transplanting (DAT) and at two different time sessions of morning (7:30-10:30 am) and evening (2:30-5.30 pm).
  6. Yeo SK, Liong MT
    J Sci Food Agric, 2013 Jan;93(2):396-409.
    PMID: 22806322 DOI: 10.1002/jsfa.5775
    The aim of this study was to evaluate the effect of electroporation (2.5-7.5 kV cm⁻¹ for 3.0-4.0 ms) on the growth of lactobacilli and bifidobacteria, membrane properties and bioconversion of isoflavones in mannitol-soymilk.
  7. Yeo SK, Liong MT
    J Sci Food Agric, 2010 Jan 30;90(2):267-75.
    PMID: 20355041 DOI: 10.1002/jsfa.3808
    Soy products have attracted much attention lately as carriers for probiotics. This study was aimed at enhancing the growth of probiotics in soymilk via supplementation with prebiotics.
  8. Ye J, Hua X, Shao X, Yang R
    J Sci Food Agric, 2023 Nov 23.
    PMID: 37997448 DOI: 10.1002/jsfa.13155
    BACKGROUND: Developing the stable and healthy emulsion-based food is in accord with the needs of people for health. In the present study, acidification at pH 3.0 of peanut polysaccharide (APPSI) was employed to regulate its conformation and further improve its advantages in preparing oil-in-water emulsion.

    RESULTS: The results indicated that acidification induced conversion of PPSI aggregates into linear chains. Increasing concentration promoted formation of cross-linked network structure shown in transmission electron microscopy images. Consequently, the viscosity, yield stress, storage modulus and flow activation energy significantly increased, further fabricating gel structure. Moreover, aggregation behavior suggested that more exposed proteins were involved in gel structure, thereby forming many hydrophobic cores as verified by fluorescence spectroscopy of pyrene. Afterwards, emulsion characteristics indicated that APPSI produced strong and thick steric hindrance around oil droplets and the coil-like interweaved chains locked the continuous phase, bringing strong elasticity and resistance to stress and creaming. Meanwhile, the lower fatty acid in APPSI-emulsion was released after simulated gastrointestinal digestion, mainly as a result of the high retention ratio of emulsion droplets. Furthermore, the elastic and viscous Lissajous curves suggested that the structure strength of APPSI-emulsion was similar to that of the salad dressing within the strain 53.22%.

    CONCLUSION: The conformation of PPSI after acidification at pH 3.0 was suitable for preparing the stable emulsion. The obtained emulsion could resist digestion and maintain a strong structure, comprising a cholesterol-free and low-fat salad dressing substitute. © 2023 Society of Chemical Industry.

  9. Yap YH, Tan N, Fung S, Aziz AA, Tan C, Ng S
    J Sci Food Agric, 2013 Sep;93(12):2945-52.
    PMID: 23460242 DOI: 10.1002/jsfa.6121
    Lignosus rhinocerus (tiger milk mushroom) is an important medicinal mushroom used in Southeast Asia and China, and its sclerotium can be developed into functional food/nutraceuticals. The nutrient composition, antioxidant properties, and anti-proliferative activity of wild type and a cultivated strain of L. rhinocerus sclerotia were investigated.
  10. Yap JY, Hii CL, Ong SP, Lim KH, Abas F, Pin KY
    J Sci Food Agric, 2020 May;100(7):2932-2937.
    PMID: 32031257 DOI: 10.1002/jsfa.10320
    BACKGROUND: Papaya is widely grown in Malaysia and normally only the fruits are consumed. Other parts of the plant such as leaves, roots, bark, peel, seeds and pulp are also known to have medicinal properties and have been used to treat various diseases. Papaya leaves also contain flavonoids, alkaloids phenolic compounds and cynogenetic compounds, and are also reported to be able to treat dengue fever.

    RESULTS: Studies were carried out on drying of papaya leaves using hot air (60, 70 and 80 °C), shade and freeze drying. Effective diffusivities were estimated ranging from 2.09 × 10-12 to 2.18 × 10-12 m2 s-1 from hot air drying, which are within the order of magnitudes reported for most agricultural and food products. The activation energy to initiate drying showed a relatively low value (2.11 kJ mol-1 ) as a result of the thin leave layer that eased moisture diffusion. In terms of total polyphenols content and antioxidant activities, freeze-dried sample showed a significantly higher (P 

  11. Yang Z, Cui J, Yun Y, Xu Y, Tan CP, Zhang W
    J Sci Food Agric, 2024 Jan 29.
    PMID: 38284624 DOI: 10.1002/jsfa.13338
    BACKGROUND: The inherent properties of coconut oil (CO), including its elevated saturated fatty acid content and low melting point, make it suitable for application in plastic fat processing. The present study explores the physicochemical characteristics, micromorphology and oxidative stability of oleogels produced from CO using various gelators [ethylcellulose (EC), β-sitosterol/γ-oryzanol (PS) and glyceryl monostearate (MG)] to elucidate the formation mechanisms of coconut oleogels (EC-COO, PS-COO and MG-COO).

    RESULTS: Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by β and β'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO.

    CONCLUSION: Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.

  12. Yang Y, Cao Y, Zhang J, Fan L, Huang Y, Tan TC, et al.
    J Sci Food Agric, 2024 May;104(7):3926-3935.
    PMID: 38252625 DOI: 10.1002/jsfa.13273
    BACKGROUND: Chinese mugwort (Artemisia argyi) possesses extensive pharmacological activities associated with anti-tumour, antioxidative and anti-inflammatory effects. The present study aimed to investigate the antioxidant and anti-ageing effects of A. argyi extract (AAE) on the fruit fly (Drosophila melanogaster) ageing model by detecting antioxidant enzyme activities and the mRNA level of antioxidant genes.

    RESULTS: AAE could significantly lengthen the mean lifespan, 50% survival days, and maximum lifespan of D. melanogaster, especially when the amount of AAE added reached 6.68 mg mL-1, the mean lifespan of both female and male flies increased by 23.74% and 22.30%, respectively, indicating the effective life extension effect of AAE. At the same time, AAE could improve the climbing ability and tolerance to hydrogen peroxide in D. melanogaster. In addition, the addition of AAE effectively increased the activities of copper-zinc-containing superoxide dismutase, manganese-containing superoxide dismutase and catalase in D. melanogaster and reduced the contents of malondialdehyde. Moreover, when reared with diets containing AAE, the expression of antioxidant-related genes SOD1, SOD2 and CAT was up-regulated in D. melanogaster and down-regulated for MTH genes.

    CONCLUSION: The study indicates that AAE effectively enhances the antioxidant capacity of D. melanogaster and has potential applications as an antioxidant and anti-ageing agent in the nutraceutical industry. © 2024 Society of Chemical Industry.

  13. Yan R, Zeng X, Shen J, Wu Z, Guo Y, Du Q, et al.
    J Sci Food Agric, 2024 Mar 07.
    PMID: 38450745 DOI: 10.1002/jsfa.13444
    Strain activity and stability severely limit the beneficial effects of probiotics in modulating host health. Postbiotics have emerged as a promising alternative as they can provide similar or even enhanced efficacy to probiotics, even under inactivated conditions. This review introduces the ingredients, preparation, and identification techniques of postbiotics, focusing on the comparison of the advantages and limitations between probiotics and postbiotics based on their mechanisms and applications. Inactivation treatment is the most significant difference between postbiotics and probiotics. We highlight the use of emerging technologies to inactivate probiotics, optimize process conditions to maintain the activity of postbiotics, or scale up their production. Postbiotics have high stability which can overcome unfavorable factors, such as easy inactivation and difficult colonization of probiotics after entering the intestine, and are rapidly activated, allowing continuous and rapid optimization of the intestinal microecological environment. They provide unique mechanisms, and multiple targets act on the gut-organ axis, co-providing new clues for the study of the biological functions of postbiotics. We summarize the mechanisms of action of inactivated lactic acid bacteria, highlighting that the NF-κB and MAPK pathways can be used as immune targeting pathways for postbiotic modulation of host health. Generally, we believe that as the classification, composition, and efficacy mechanism of postbiotics become clearer they will be more widely used in food, medicine, and other fields, greatly enriching the dimensions of food innovation. © 2024 Society of Chemical Industry.
  14. Wei J, Ren W, Wang L, Liu M, Tian X, Ding G, et al.
    J Sci Food Agric, 2020 Dec;100(15):5627-5636.
    PMID: 32712996 DOI: 10.1002/jsfa.10690
    BACKGROUND: Serofluid dish, a traditional Chinese fermented food, possesses unique flavors and health beneficial effects. These properties are likely due to the sophisticated metabolic networks during fermentation, which are mainly driven by microbiota. However, the exact roles of metabolic pathways and the microbial community during this process remain equivocal.

    RESULTS: Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus.

    CONCLUSION: This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.

  15. Usman MG, Rafii MY, Martini MY, Oladosu Y, Kashiani P
    J Sci Food Agric, 2017 Mar;97(4):1164-1171.
    PMID: 27290898 DOI: 10.1002/jsfa.7843
    BACKGROUND: Studies on genotypic and phenotypic correlations among characters of crop plants are useful in planning, evaluating and setting selection criteria for the desired characters in a breeding program. The present study aimed to estimate the phenotypic correlation coefficients among yield and yield attributed characters and to work out the direct and indirect effects of yield-related characters on yield per plant using path coefficient analysis. Twenty-six genotypes of chili pepper were laid out in a randomized complete block design with three replications.

    RESULTS: Yield per plant showed positive and highly significant (P ≤ 0.01) correlations with most of the characters studied at both the phenotypic and genotypic levels. By contrast, disease incidence and days to flowering showed a significant negative association with yield. Fruit weight and number of fruits exerted positive direct effect on yield and also had a positive and significant (P ≤ 0.01) correlation with yield per plant. However, fruit length showed a low negative direct effect with a strong and positive indirect effect through fruit weight on yield and had a positive and significant association with yield.

    CONCLUSION: Longer fruits, heavy fruits and a high number of fruits are variables that are related to higher yields of chili pepper under tropical conditions and hence could be used as a reliable indicator in indirect selection for yield. © 2016 Society of Chemical Industry.

  16. Uddin MS, Sarker MZ, Ferdosh S, Akanda MJ, Easmin MS, Bt Shamsudin SH, et al.
    J Sci Food Agric, 2015 May;95(7):1385-94.
    PMID: 25048690 DOI: 10.1002/jsfa.6833
    Phytosterols provide important health benefits: in particular, the lowering of cholesterol. From environmental and commercial points of view, the most appropriate technique has been searched for extracting phytosterols from plant matrices. As a green technology, supercritical fluid extraction (SFE) using carbon dioxide (CO2) is widely used to extract bioactive compounds from different plant matrices. Several studies have been performed to extract phytosterols using supercritical CO2 (SC-CO2) and this technology has clearly offered potential advantages over conventional extraction methods. However, the efficiency of SFE technology fully relies on the processing parameters, chemistry of interest compounds, nature of the plant matrices and expertise of handling. This review covers SFE technology with particular reference to phytosterol extraction using SC-CO2. Moreover, the chemistry of phytosterols, properties of supercritical fluids (SFs) and the applied experimental designs have been discussed for better understanding of phytosterol solubility in SC-CO2.
  17. Thong KL, Tan LK, Ooi PT
    J Sci Food Agric, 2018 Jan;98(1):87-95.
    PMID: 28542807 DOI: 10.1002/jsfa.8442
    BACKGROUND: The objectives of the present study were to determine the antimicrobial resistance, virulotypes and genetic diversity of Yersinia enterocolitica isolated from uncooked porcine food and live pigs in Malaysia.

    RESULTS: Thirty-two non-repeat Y. enterocolitica strains of three bioserotypes (3 variant/O:3, n = 27; 1B/O:8, n = 3; 1A/O:5, n = 2) were analysed. Approximately 90% of strains were multidrug-resistant with a multiple antibiotic resistance index < 0.2 and the majority of the strains were resistant to nalidixic acid, clindamycin, ampicillin, ticarcillin, tetracycline and amoxicillin. Yersinia enterocolitica could be distinguished distinctly into three clusters by pulsed-field gel electrophoresis, with each belonging to a particular bioserotype. Strains of 3 variant/O:3 were more heterogeneous than others. Eleven of the 15 virulence genes tested (hreP, virF, rfbC, myfA, sat, inv, ail, ymoA, ystA, tccC, yadA) and pYV virulence plasmid were present in all the bioserotpe 3 variant/03 strains.

    CONCLUSION: The occurrence of virulent strains of Y. enterocolitica in pigs and porcine products reiterated that pigs are important reservoirs for Y. enterocolitica. The increasing trend of multidrug resistant strains is a public health concern. This is the first report on the occurrence of potential pathogenic and resistant strains of Y. enterocolitica in pigs in Malaysia. © 2017 Society of Chemical Industry.

  18. Tee YK, Balasundram SK, Ding P, M Hanif AH, Bariah K
    J Sci Food Agric, 2019 Mar 15;99(4):1700-1708.
    PMID: 30206959 DOI: 10.1002/jsfa.9359
    BACKGROUND: A series of fluorescence indices (anthocyanin, flavonol, chlorophyll and nitrogen balance) were deployed to detect the pigments and colourless flavonoids in cacao pods of three commercial cacao (Theobroma cacao L.) genotypes (QH1003, KKM22 and MCBC1) using a fast and non-destructive multiparametric fluorescence sensor. The aim was to determine optimum harvest periods (either 4 or 5 months after pod emergence) of commercial cacao based on fluorescence indices of cacao development and bean quality.

    RESULTS: As pod developed, cacao exhibited a rise with the peak of flavonol occurring at months 4 and 5 after pod maturity was initiated while nitrogen balance showed a decreasing trend during maturity. Cacao pods contained high chlorophyll as they developed but chlorophyll content declined significantly on pods that ripened at month 5.

    CONCLUSION: Cacao pods harvested at months 4 and 5 can be considered as commercially-ready as the beans have developed good quality and comply with the Malaysian standard on cacao bean specification. Thus, cacao pods can be harvested earlier when they reach maturity at month 4 after pod emergence to avoid germinated beans and over fermentation in ripe pods harvested at month 5. © 2018 Society of Chemical Industry.

  19. Tee YK, Bariah K, Hisyam Zainudin B, Samuel Yap KC, Ong NG
    J Sci Food Agric, 2022 Mar 15;102(4):1576-1585.
    PMID: 34405409 DOI: 10.1002/jsfa.11494
    BACKGROUND: Cacao beans are rich sources of polyphenols with an abundance of flavonoids and methylxanthines that have positive influences on human health. The main factors affecting the formation of flavor as well as the chemical and bioactive composition of cacao beans are cacao pod maturity and post-harvest fermentation. The purpose of this research was to evaluate the effects of pod harvest maturity (mature and ripe) and post-fermentation period (1, 3, and 5 days in a controlled temperature environment) measured by pre-harvest maturity indices, post-harvest quality tests, chemical measurements, and organoleptic evaluation.

    RESULTS: As pods developed, flavonol accumulated while nitrogen content degraded. Mature pods produced beans with a higher flavonol, catechin, and total phenolic content (TPC). As fermentation progressed, the beans' fat, TPC, antioxidant activity, and catechin content increased, regardless of pod maturity at harvest. Free fatty acid (FFA) levels were highest in 5 day fermented beans. The 3 day fermented beans contained significantly higher epicatechin, with lower FFA content. Chocolate made from mature beans with 3 day fermentation was more pleasant as it scored the highest in flavor intensity and complexity and the lowest in acidity and astringency.

    CONCLUSION: This study suggests that cacao pods harvested at the mature stage with further fermentation for 3 days under controlled temperatures produce specialty beans with potential health benefits. © 2021 Society of Chemical Industry.

  20. Tang EL, Rajarajeswaran J, Fung S, Kanthimathi MS
    J Sci Food Agric, 2015 Oct;95(13):2763-71.
    PMID: 25582089 DOI: 10.1002/jsfa.7078
    BACKGROUND: Petroselinum crispum (English parsley) is a common herb of the Apiaceae family that is cultivated throughout the world and is widely used as a seasoning condiment. Studies have shown its potential as a medicinal herb. In this study, P. crispum leaf and stem extracts were evaluated for their antioxidant properties, protection against DNA damage in normal 3T3-L1 cells, and the inhibition of proliferation and migration of the MCF-7 cells.

    RESULTS: The dichloromethane extract of P. crispum exhibited the highest phenolic content (42.31 ± 0.50 mg GAE g(-1) ) and ferric reducing ability (0.360 ± 0.009 mmol g(-1) ) of the various extractions performed. The extract showed DPPH radical scavenging activity with an IC50 value of 3310.0 ± 80.5 µg mL(-1) . Mouse fibroblasts (3T3-L1) pre-treated with 400 µg mL(-1) of the extract showed 50.9% protection against H2 O2 -induced DNA damage, suggesting its potential in cancer prevention. The extract (300 µg mL(-1) ) inhibited H2 O2 -induced MCF-7 cell migration by 41% ± 4%. As cell migration is necessary for metastasis of cancer cells, inhibition of migration is an indication of protection against metastasis.

    CONCLUSION: Petroselinum crispum has health-promoting properties with the potential to prevent oxidative stress-related diseases and can be developed into functional food.

Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links