Displaying publications 1 - 20 of 344 in total

  1. Elsafi M, El-Nahal MA, Alrashedi MF, Olarinoye OI, Sayyed MI, Khandaker MU, et al.
    Materials (Basel), 2021 Jul 27;14(15).
    PMID: 34361388 DOI: 10.3390/ma14154194
    In this work, some marble types were collected from Egypt, and their shielding characteristics were estimated. Their rigidity, in addition to their elegant shape, led us to consider their use as a protective shield, in addition to making the workplace more beautiful. The mass attenuation coefficient (μ/ρ) was calculated for three types of marble (Breshia, Galala, and Trista) experimentally, using a narrow gamma ray source and high pure germanium (HPGe). The results obtained were compared with the XCOM program and indicated a very good agreement between the two methods. The linear attenuation coefficient (μ) was evaluated to calculate the half and tenth value layers. The maximum μ value of 1.055, 1.041, and 1.024 cm-1 was obtained for Breshia, Galala, and Trista, respectively, at 0.06 MeV. The mean free path for studying the materials was compared with other shielding materials and showed good results at different energy scales. The energy absorption (EABF) and exposure buildup factors (EBF) were determined at different mean free paths. The fast neutron removal cross section ΣR was calculated and expresses the ability of the marbles to slow down fast neutrons through multiple scattering. This is the ability of the marbles to shield fast neutrons.
  2. Chong SW, Lai CW, Abd Hamid SB
    Materials (Basel), 2016 Jan 25;9(2).
    PMID: 28787869 DOI: 10.3390/ma9020069
    A controllable electrochemical synthesis to convert reduced graphene oxide (rGO) from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs). Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211%) attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3) to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO) glasses.
  3. Abd Samad NA, Lai CW, Lau KS, Abd Hamid SB
    Materials (Basel), 2016 Nov 22;9(11).
    PMID: 28774068 DOI: 10.3390/ma9110937
    Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl₂ and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO₂ into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO₂ loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm² (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm² (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3-4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO₂-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination.
  4. Ibrahim Lakin I, Abbas Z, Azis RS, Ibrahim NA, Abd Rahman MA
    Materials (Basel), 2020 Oct 14;13(20).
    PMID: 33066690 DOI: 10.3390/ma13204581
    Oil palm empty fruit bunch (OPEFB) fiber/polylactic acid (PLA)-based composites filled with 6-22 wt.% multi-walled carbon nanotubes (MWCNTs) were prepared using a melt blend method. The composites were analyzed using X-ray diffraction (XRD), Fourier transforms infrared (FTIR), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) of the MWCNTs. The composites were characterized for complex permittivity using the coaxial probe at 8-12 GHz range and the transmission/reflection coefficients were measured through micro strip line. The dielectric permittivity measurements carried out at X-band frequency revealed that 22 wt.% MWCNTs nanocomposite display higher dielectric constant (ε') and dielectric loss (ε″) values of 4.23 and 0.65, respectively. A maximum absorption loss of 15.2 dB was obtained for the 22 wt.% nanocomposites at 11.75 GHz. This result suggests that PLA/OPEFB/MWCNTs composites are a promising cheap and lightweight material for the effective microwave absorption in the X-band frequency range.
  5. Ismail S, Yusof NA, Abdullah J, Abd Rahman SF
    Materials (Basel), 2020 Jul 16;13(14).
    PMID: 32708531 DOI: 10.3390/ma13143168
    Arsenic poisoning in the environment can cause severe effects on human health, hence detection is crucial. An electrochemical-based portable assessment of arsenic contamination is the ability to identify arsenite (As(III)). To achieve this, a low-cost electroanalytical assay for the detection of As(III) utilizing a silica nanoparticles (SiNPs)-modified screen-printed carbon electrode (SPCE) was developed. The morphological and elemental analysis of functionalized SiNPs and a SiNPs/SPCE-modified sensor was studied using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). The electrochemical responses towards arsenic detection were measured using the cyclic voltammetry (CV) and linear sweep anodic stripping voltammetry (LSASV) techniques. Under optimized conditions, the anodic peak current was proportional to the As(III) concentration over a wide linear range of 5 to 30 µg/L, with a detection limit of 6.2 µg/L. The suggested approach was effectively valid for the testing of As(III) found within the real water samples with good reproducibility and stability.
  6. Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, et al.
    Materials (Basel), 2019 Sep 20;12(19).
    PMID: 31547011 DOI: 10.3390/ma12193052
    Nanoparticles are defined as ultrafine particles sized between 1 and 100 nanometres in diameter. In recent decades, there has been wide scientific research on the various uses of nanoparticles in construction, electronics, manufacturing, cosmetics, and medicine. The advantages of using nanoparticles in construction are immense, promising extraordinary physical and chemical properties for modified construction materials. Among the many different types of nanoparticles, titanium dioxide, carbon nanotubes, silica, copper, clay, and aluminium oxide are the most widely used nanoparticles in the construction sector. The promise of nanoparticles as observed in construction is reflected in other adoptive industries, driving the growth in demand and production quantity at an exorbitant rate. The objective of this study was to analyse the use of nanoparticles within the construction industry to exemplify the benefits of nanoparticle applications and to address the short-term and long-term effects of nanoparticles on the environment and human health within the microcosm of industry so that the findings may be generalised. The benefits of nanoparticle utilisation are demonstrated through specific applications in common materials, particularly in normal concrete, asphalt concrete, bricks, timber, and steel. In addition, the paper addresses the potential benefits and safety barriers for using nanomaterials, with consideration given to key areas of knowledge associated with exposure to nanoparticles that may have implications for health and environmental safety. The field of nanotechnology is considered rather young compared to established industries, thus limiting the time for research and risk analysis. Nevertheless, it is pertinent that research and regulation precede the widespread adoption of potentially harmful particles to mitigate undue risk.
  7. Khanis NH, Ritikos R, Ahmad Kamal SA, Abdul Rahman S
    Materials (Basel), 2017 Jan 24;10(2).
    PMID: 28772460 DOI: 10.3390/ma10020102
    Nanostructured hydrogenated carbon nitride (CNx:H) thin films were synthesized on a crystal silicon substrate at low deposition temperature by radio-frequency plasma-enhanced chemical vapor deposition (PECVD). Methane and nitrogen were the precursor gases used in this deposition process. The effects of N₂ to the total gas flow rate ratio on the formation of CNx:H nanostructures were investigated. Field-emission scanning electron microscopy (FESEM), Auger electron spectroscopy (AES), Raman scattering, and Fourier transform of infrared spectroscopies (FTIR) were used to characterize the films. The atomic nitrogen to carbon ratio and sp² bonds in the film structure showed a strong influence on its growth rate, and its overall structure is strongly influenced by even small changes in the N₂:(N₂ + CH₄) ratio. The formation of fibrous CNx:H nanorod structures occurs at ratios of 0.7 and 0.75, which also shows improved surface hydrophobic characteristic. Analysis showed that significant presence of isonitrile bonds in a more ordered film structure were important criteria contributing to the formation of vertically-aligned nanorods. The hydrophobicity of the CNx:H surface improved with the enhancement in the vertical alignment and uniformity in the distribution of the fibrous nanorod structures.
  8. Choo TF, Mohd Salleh MA, Kok KY, Matori KA, Abdul Rashid S
    Materials (Basel), 2020 Nov 18;13(22).
    PMID: 33218206 DOI: 10.3390/ma13225218
    Grog is an additive material that plays important roles in ceramic making. It improves the fabrication process of green bodies as well as the physical properties of fired bodies. Few low-cost materials and wastes have found their application as grog in recent years, thus encouraging the replacement of commercial grogs with cost-saving materials. Coal fly ash, a combustion waste produced by coal-fired power plant, has the potential to be converted into grog owing to its small particle sizes and high content of silica and alumina. In this study, grog was derived from coal fly ash and mixed with kaolin clay to produce ceramics. Effects of the grog addition on the resultant ceramics were investigated. It was found that, to a certain extent, the grog addition reduced the firing shrinkage and increased the total porosity of the ceramics. The dimensional stability of the ceramics at a firing temperature of 1200 °C was also not noticeably affected by the grog. However, the grog addition in general had negative effects on the biaxial flexural strength and refractoriness of the ceramics.
  9. Kanadasan J, Abdul Razak H
    Materials (Basel), 2015 Dec 16;8(12):8817-8838.
    PMID: 28793748 DOI: 10.3390/ma8125494
    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.
  10. Saman NM, Zakaria IH, Ahmad MH, Abdul-Malek Z
    Materials (Basel), 2021 Jun 28;14(13).
    PMID: 34203364 DOI: 10.3390/ma14133610
    Mineral oil has been chosen as an insulating liquid in power transformers due to its superior characteristics, such as being an effective insulation medium and a great cooling agent. Meanwhile, the performance of mineral oil as an insulation liquid can be further enhanced by dispersing nanoparticles into the mineral oil, and this composition is called nanofluids. However, the incorporation of nanoparticles into the mineral oil conventionally causes the nanoparticles to agglomerate and settle as sediment in the base fluid, thereby limiting the improvement of the insulation properties. In addition, limited studies have been reported for the transformer oil as a base fluid using Aluminum Oxide (Al2O3) as nanoparticles. Hence, this paper reported an experimental study to investigate the significant role of cold plasma treatment in modifying and treating the surface of nano-alumina to obtain a better interaction between the nano-alumina and the base fluid, consequently improving the insulation characteristics such as breakdown voltage, partial discharge characteristics, thermal conductivity, and viscosity of the nanofluids. The plasma treatment process was conducted on the surface of nano-alumina under atmospheric pressure plasma by using the dielectric barrier discharge concept. The breakdown strength and partial discharge characteristics of the nanofluids were measured according to IEC 60156 and IEC 60270 standards, respectively. In contrast, the viscosity and thermal conductivity of the nanofluids were determined using Brookfield DV-II + Pro Automated viscometer and Decagon KD2-Pro conductivity meter, respectively. The results indicate that the 0.1 wt% of plasma-treated alumina nanofluids has shown the most comprehensive improvements in electrical properties, dispersion stability, and thermal properties. Therefore, the plasma treatment has improved the nanoparticles dispersion and stability in nanofluids by providing stronger interactions between the mineral oil and the nanoparticles.
  11. Ali M, Abbas S, Salah B, Akhter J, Saleem W, Haruna S, et al.
    Materials (Basel), 2021 Aug 19;14(16).
    PMID: 34443196 DOI: 10.3390/ma14164675
    Reinforced concrete is used worldwide in the construction industry. In past eras, extensive research has been conducted and has clearly shown the performance of stress-strain behaviour and ductility design for high-, standard-, and normal-strength concrete (NSC) in axial compression. Limited research has been conducted on the experimental and analytical investigation of low-strength concrete (LSC) confinement behaviour under axial compression and relative ductility. Meanwhile, analytical equations are not investigated experimentally for the confinement behaviour of LSC by transverse reinforcement. The current study experimentally investigates the concrete confinement behaviour under axial compression and relative ductility of NSC and LSC using volumetric transverse reinforcement (VTR), and comparison with several analytical models such as Mander, Kent, and Park, and Saatcioglu. In this study, a total of 44 reinforced-column specimens at a length of 18 in with a cross-section of 7 in × 7 in were used for uniaxial monotonic loading of NSC and LSC. Three columns of each set were confined with 2 in, 4 in, 6 in, and 8 in c/c lateral ties spacing. The experimental results show that the central concrete stresses are significantly affected by decreasing the spacing between the transverse steel. In the case of the LSC, the core stresses are double the central stress of NSC. However, increasing the VTR, the capacity and the ductility of NSC and LSC increases. Reducing the spacing between the ties from 8 in to 2 in center to center can affect the concrete column's strength by 60% in LSC, but 25% in the NSC. The VTR and the spacing between the ties greatly affected the LSC compared to NSC. It was found that the relative ductility of the confined column samples was almost twice that of the unrestrained column samples. Regarding different models, the Manders model best represents the performance before the ultimate strength, whereas Kent and Park represents post-peak behaviour.
  12. Amjad M, Badshah S, Rafique AF, Adil Khattak M, Khan RU, Abdullah Harasani WI
    Materials (Basel), 2020 May 16;13(10).
    PMID: 32429420 DOI: 10.3390/ma13102299
    Implants are widely used in the human body for the replacement of affected bones. Fatigue failure is one of the serious concerns for implants. Therefore, understanding of the underlying mechanism leading to fatigue failure is important for the longevity of biomaterial implants. In this paper, the fracture toughness and fatigue crack growth of titanium alloy biomaterial Ti-27Nb has been experimentally investigated. The Ti-27Nb material is tested for fatigue crack growth in different environmental conditions representing the ambient and in vitro environments for 504 hours and 816 hours, respectively. Fractography of the tested specimen is conducted using Scanning Electron Microscope (SEM). The results of the fatigue crack growth propagation of the ambient and in vitro samples are similar in the Paris crack growth region. However, in the threshold region, the crack growth rate is higher for the Simulated Body Fluid (SBF) treated specimen. The fracture surface morphology of in vitro samples shows brittle fracture as compared to ambient specimens with significant plasticity and striations marks. It is proposed that a similar investigation may be conducted with specimens treated in SBF for prolonged periods to further ascertain the findings of this study.
  13. Padzil FNM, Lee SH, Ainun ZMA, Lee CH, Abdullah LC
    Materials (Basel), 2020 Mar 10;13(5).
    PMID: 32164150 DOI: 10.3390/ma13051245
    Oil palm empty fruit bunch (OPEFB) is considered the cheapest natural fiber with good properties and exists abundantly in Malaysia. It has great potential as an alternative main raw material to substitute woody plants. On the other hand, the well-known polymeric hydrogel has gathered a lot of interest due to its three-dimensional (3D) cross-linked network with high porosity. However, some issues regarding its performance like poor interfacial connectivity and mechanical strength have been raised, hence nanocellulose has been introduced. In this review, the plantation of oil palm in Malaysia is discussed to show the potential of OPEFB as a nanocellulose material in hydrogel production. Nanocellulose can be categorized into three nano-structured celluloses, which differ in the processing method. The most popular nanocellulose hydrogel processing methods are included in this review. The 3D printing method is taking the lead in current hydrogel production due to its high complexity and the need for hygiene products. Some of the latest advanced applications are discussed to show the high commercialization potential of nanocellulose hydrogel products. The authors also considered the challenges and future direction of nanocellulose hydrogel. OPEFB has met the requirements of the marketplace and product value chains as nanocellulose raw materials in hydrogel applications.
  14. Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Abdullah M
    Materials (Basel), 2019 Sep 08;12(18).
    PMID: 31500398 DOI: 10.3390/ma12182903
    In this study, simultaneous adsorption of cationic dyes was investigated by using binary component solutions. Thiourea-modified poly(acrylonitrile-co-acrylic acid) (TMPAA) polymer was used as an adsorbent for uptake of cationic dyes (malachite green, MG and methylene blue, MB) from aqueous solution in a binary system. Adsorption tests revealed that TMPAA presented high adsorption of MG and MB at higher pH and higher dye concentrations. It suggested that there are strong electrostatic attractions between the surface functional groups of the adsorbent and cationic dyes. The equilibrium analyses explain that both extended Langmuir and extended models are suitable for the description of adsorption data in the binary system. An antagonistic effect was found, probably due to triangular (MG) and linear (MB) molecular structures that mutually hinder the adsorption of both dyes on TMPAA. Besides, the kinetic studies for sorption of MG and MB dyes onto adsorbent were better represented by a pseudo-second-order model, which demonstrates chemisorption between the polymeric TMPAA adsorbent and dye molecules. According to experimental findings, TMPAA is an attractive adsorbent for treatment of wastewater containing multiple cationic dyes.
  15. Chong BW, Othman R, Putra Jaya R, Mohd Hasan MR, Sandu AV, Nabiałek M, et al.
    Materials (Basel), 2021 Apr 09;14(8).
    PMID: 33918757 DOI: 10.3390/ma14081866
    Concrete mix design and the determination of concrete performance are not merely engineering studies, but also mathematical and statistical endeavors. The study of concrete mechanical properties involves a myriad of factors, including, but not limited to, the amount of each constituent material and its proportion, the type and dosage of chemical additives, and the inclusion of different waste materials. The number of factors and combinations make it difficult, or outright impossible, to formulate an expression of concrete performance through sheer experimentation. Hence, design of experiment has become a part of studies, involving concrete with material addition or replacement. This paper reviewed common design of experimental methods, implemented by past studies, which looked into the analysis of concrete performance. Several analysis methods were employed to optimize data collection and data analysis, such as analysis of variance (ANOVA), regression, Taguchi method, Response Surface Methodology, and Artificial Neural Network. It can be concluded that the use of statistical analysis is helpful for concrete material research, and all the reviewed designs of experimental methods are helpful in simplifying the work and saving time, while providing accurate prediction of concrete mechanical performance.
  16. Kumbar SS, Jadhav DA, Jarali CS, Talange DB, Afzal A, Khan SA, et al.
    Materials (Basel), 2021 Aug 09;14(16).
    PMID: 34442980 DOI: 10.3390/ma14164454
    Microbial fuel cell (MFC) would be a standalone solution for clean, sustainable energy and rural electrification. It can be used in addition to wastewater treatment for bioelectricity generation. Materials chosen for the membrane and electrodes are of low cost with suitable conducting ions and electrical properties. The prime objective of the present work is to enhance redox reactions by using novel and low-cost cathode catalysts synthesized from waste castor oil. Synthesized graphene has been used as an anode, castor oil-emitted carbon powder serves as a cathode, and clay material acts as a membrane. Three single-chambered MFC modules developed were used in the current study, and continuous readings were recorded. The maximum voltage achieved was 0.36 V for a 100 mL mixture of domestic wastewater and cow dung for an anodic chamber of 200 mL. The maximum power density obtained was 7280 mW/m2. In addition, a performance test was evaluated for another MFC with inoculums slurry, and a maximum voltage of 0.78 V and power density of 34.4093 mW/m2 with an anodic chamber of 50 mL was reported. The present study's findings show that such cathode catalysts can be a suitable option for practical applications of microbial fuel cells.
  17. Aziz SB, Nofal MM, Kadir MFZ, Dannoun EMA, Brza MA, Hadi JM, et al.
    Materials (Basel), 2021 Apr 16;14(8).
    PMID: 33923484 DOI: 10.3390/ma14081994
    This report shows a simple solution cast methodology to prepare plasticized polyvinyl alcohol (PVA)/methylcellulose (MC)-ammonium iodide (NH4I) electrolyte at room temperature. The maximum conducting membrane has a conductivity of 3.21 × 10-3 S/cm. It is shown that the number density, mobility and diffusion coefficient of ions are enhanced by increasing the glycerol. A number of electric and electrochemical properties of the electrolyte-impedance, dielectric properties, transference numbers, potential window, energy density, specific capacitance (Cs) and power density-were determined. From the determined electric and electrochemical properties, it is shown that PVA: MC-NH4I proton conducting polymer electrolyte (PE) is adequate for utilization in energy storage device (ESD). The decrease of charge transfer resistance with increasing plasticizer was observed from Bode plot. The analysis of dielectric properties has indicated that the plasticizer is a novel approach to increase the number of charge carriers. The electron and ion transference numbers were found. From the linear sweep voltammetry (LSV) response, the breakdown voltage of the electrolyte is determined. From Galvanostatic charge-discharge (GCD) measurement, the calculated Cs values are found to drop with increasing the number of cycles. The increment of internal resistance is shown by equivalent series resistance (ESR) plot. The energy and power density were studied over 250 cycles that results to the value of 5.38-3.59 Wh/kg and 757.58-347.22 W/kg, respectively.
  18. Mohammad M, Yaakob Z, Abdullah SRS
    Materials (Basel), 2013 Oct 09;6(10):4462-4478.
    PMID: 28788340 DOI: 10.3390/ma6104462
    Carbon from jatropha seed hull (JC) was prepared to study the adsorption of cadmium ions (Cd(2+)) from aqueous solutions under various experimental conditions. Batch equilibrium methods have been used to study the influences of the initial metal ion concentration (0.5-50 ppm), dosage (0.2-1 g), contact time (0-300 min), pH (2-7), and temperature (26-60 °C) on adsorption behavior. It has been found that the amount of cadmium adsorbed increases with the initial metal ion concentration, temperature, pH, contact time, and amount of adsorbent. A kinetic study proved that the mechanism of Cd(2+) adsorption on JC followed a three steps process, confirmed by an intraparticle diffusion model: rapid adsorption of metal ions, a transition phase, and nearly flat plateau section. The experimental results also showed that the Cd(2+) adsorption process followed pseudo-second-order kinetics. The Langmuir and Freundlich adsorption isotherm models were used to describe the experimental data, with the former exhibiting a better correlation coefficient than the latter (R² = 0.999). The monolayer adsorption capacity of JC has been compared with the capacities of the other reported agriculturally-based adsorbents. It has been clearly demonstrated that this agricultural waste generated by the biofuel industry can be considered a potential low-cost adsorbent for the removal of Cd(2+) from industrial effluents.
  19. Lokman MQ, Shafie S, Shaban S, Ahmad F, Jaafar H, Mohd Rosnan R, et al.
    Materials (Basel), 2019 Jun 30;12(13).
    PMID: 31262020 DOI: 10.3390/ma12132111
    This study investigated the different thicknesses of TiO2 photoanode films and the effect of surface plasmon resonance (SPR) of Ag-TiO2 nanocomposites on the current-voltage (I-V) performance of dye-sensitized solar cells (DSSC). The TiO2 layer was deposited using the doctor blade technique and the thickness of the TiO2 films was controlled by using a different number of Scotch tape layers. The silver nanoparticles (AgNP) were synthesised using a chemical reduction method and the concentration of sodium citrate as a reducing agent was varied from 4 to 12 mM to study the effect of citrate ion on the size of the nanoparticles. Ag-TiO2 nanopowder was prepared by adding pure anatase TiO2 powder into AgNP colloidal solution. The mixture was left to dry for 24 h to obtain Ag-TiO2 powder for paste preparation. The three-layer Scotch tape, with thickness of 14.38 µm, achieved a high efficiency of 4.14%. This results showed that three layers was the optimal thickness to improve dye loading and to reduce the charge recombination rate. As for the Ag-TiO2 nanocomposites, 10 mM of AgNP, with a mean diameter of 65.23 nm and high efficiency of 6.92%, proved that SPR can enhance the absorption capability of dye and improve the photon-to-electron generation.
  20. Muhammed DS, Brza MA, M Nofal M, B Aziz S, A Hussen S, Abdulwahid RT
    Materials (Basel), 2020 Jul 03;13(13).
    PMID: 32635317 DOI: 10.3390/ma13132979
    The structure and optical properties of polyethylene oxide (PEO) doped with tin titanate (SnTiO3) nano-filler were studied by X-ray diffraction (XRD) and UV-Vis spectroscopy as non-destructive techniques. PEO-based composed polymer electrolytes inserted with SnTiO3 nano-particles (NPs) were synthesized through the solution cast technique. The change from crystalline phase to amorphous phase of the host polymer was established by the lowering of the intensity and broadening of the crystalline peaks. The optical constants of PEO/SnTiO3 nano-composite (NC), such as, refractive index (n), optical absorption coefficient (α), dielectric loss (εi), as well as dielectric constant (εr) were determined for pure PEO and PEO/SnTiO3 NC. From these findings, the value of n of PEO altered from 2.13 to 2.47 upon the addition of 4 wt.% SnTiO3NPs. The value of εr also increased from 4.5 to 6.3, with addition of 4 wt.% SnTiO3. The fundamental optical absorption edge of the PEO shifted toward lower photon energy upon the addition of the SnTiO3 NPs, confirming a decrement in the optical band gap energy of PEO. The band gap shifted from 4.78 eV to 4.612 eV for PEO-doped with 4 wt.% SnTiO3. The nature of electronic transitions in the pure and the composite material were studied on the basis of Tauc's model, while optical εi examination was also carried out to calculate the optical band gap.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links