Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Mohd-Lila MA, Yee LK, Cen LS, Bala JA, Balakrishnan KN, Allaudin ZN, et al.
    Microb Pathog, 2019 Sep;134:103572.
    PMID: 31163251 DOI: 10.1016/j.micpath.2019.103572
    The common physical and chemical methods for controlling rat pest are less than satisfactory and inhumane. Immunocontraception approach has been considered more humane and it can be accomplished by inducing the relevant host immune response that block further development of reproductive gametes. ZP3 proteins are known to play very important role during sperm-ovum fertilization. It is a self-antigen and only localized in female ovaries. Therefore, an immunization with ZP3 protein elsewhere will induce a generalize host immune response against ZP3 protein. This study employed rat ZP3 (rZP3) gene prepared from its cDNA of Rattus rattus diardii. It was delivered and expressed in vivo by naked plamid DNA (DrZP3) or recombinant ZP3-Adenovirus (Ad-rZP3). Expression studies in vitro with DrZP3 or Ad-ZP3 showed rZP3 proteins were successfully expressed in Vero cells. Hyperimmune serum against rZP3 that were prepared by immunizing several rats with purified rZP3-pichia yeast fusion protein showed it blocked sperms from binding DrZP3-transfected Vero cells. Female Sprague Dawley rats immunized with DrZP3 demonstrated a long-term effect for significant reduction of fertility up to 92.6%. Ovaries from rats immunized with DrZP3 were severely atrophied with disappearance of primordial follicles from ovarian cortex with an increased in the amount of oocyte-free cell clusters. Female rats immunized with Ad-rZP3 demonstrated 27% reduction of fertility. The infertility induced by Ad-rZP3 is comparatively low and ineffective. This could be due to a strong host immune response that suppresses the recombinant virus itself resulted in minimum rZP3 protein presentation to the host immune system. As a result, low antibody titers produced against rZP3 is insufficient to block oocytes from maturity and fertilization. Therefore, immunization with DrZP3 for immunocontraception is more effective than Ad-rZP3 recombinant adenovirus. It is proposed to explore further on the use of adenovirus or other alternative viruses to deliver ZP3 protein and for the development of enhanced expression of rZP3 in target host.
  2. Odeyemi OA, Abdullah Sani N
    Microb Pathog, 2019 Nov;136:103665.
    PMID: 31404630 DOI: 10.1016/j.micpath.2019.103665
    This study aimed to investigate antibiotic resistance and putative virulence factors among Cronobacter sakazakii isolated from powdered infant formula and other sources. The following 9 cultures (CR1-9) were collected from our culture collection: C. sakazakii and 3 Cronobacter species: C. sakazakii ATCC® 29544™, C. muytjensii ATCC® 51329™, C. turicensis E866 were used in this study. Isolates were subjected to antibiotic susceptibility and the following virulence factors (protease, DNase, haemolysin, gelatinase, motility and biofilm formation) using phenotypic methods. All the bacteria were able to form biofilm on agar at 37 °C and were resistant to ampicillin, erythromycin, fosfomycin and sulphamethoxazole. It was observed from this study that tested strains formed weak and strong biofilm with violet dry and rough (rdar), brown dry and rough (bdar), red mucoid and smooth (rmas) colony morphotypes on Congo red agar. Rdar expresses curli and fimbriae, while bdar expresses curli. Both biofilm colony morphotypes are commonly found in Enterobacteriaceae including Salmonella species. This study also reveals a new colony morphotypes in Cronobacter species. Conclusively, there was correlation between putative virulence factors and antibiotic resistance among the tested bacteria. Further study on virulence and antibiotic resistance genes is hereby encouraged.
  3. Odeyemi OA, Ahmad A
    Microb Pathog, 2017 Feb;103:178-185.
    PMID: 28062284 DOI: 10.1016/j.micpath.2017.01.007
    This study aimed to compare population dynamics, antibiotic resistance and biofilm formation of Aeromonas and Vibrio species from seawater and sediment collected from Northern Malaysia. Isolates with different colony morphology were characterized using both biochemical and molecular methods before testing for antibiotic resistance and biofilm formation. Results obtained from this study showed that in Kedah, the population of Aeromonas isolated from sediment was highest in Pantai Merdeka (8.22 log CFU/ml), Pulau Bunting recorded the highest population of Aeromonas from sediment (8.43 log CFU/g). It was observed that Vibrio species isolated from seawater and sediment were highest in Kuala Sanglang (9.21 log CFU/ml). In Kuala Perlis, the population of Aeromonas isolated from seawater was highest in Jeti (7.94 log CFU/ml). Highest population of Aeromonas from sediment was recorded in Kampong Tanah Baru (7.99 log CFU/g). It was observed that Vibrio species isolated from seawater was highest in Padang Benta (8.42 log CFU/g) while Jeti Kuala Perlis had highest population of Vibrio isolated from sediment. It was observed that location does not influence population of Aeromonas. The results of the independent t - test revealed that there was no significant relationship between location and population of Vibrio (df = 10, t = 1.144, p > 0.05). The occurrence of biofilm formation and prevalence of antibiotic resistant Aeromonas and Vibrio species in seawater and sediment pose danger to human and aquatic animals' health.
  4. Bitrus AA, Zunita Z, Khairani-Bejo S, Othman S, Ahmad Nadzir NA
    Microb Pathog, 2018 Oct;123:323-329.
    PMID: 30053600 DOI: 10.1016/j.micpath.2018.07.033
    This study was designed to screen for SCCmec types and to characterize the attachment site (attB) and universal insertion site (orfX) of SCCmec in a collection of 27 isolates (n = 11) methicillin resistant S. aureus and (n = 16) methicillin susceptible S. aureus isolates in Malaysia. Screening of SCCmec types and characterization of the attachment site was carried out using PCR amplification and Sanger's sequencing method. The result showed that a large proportion of the MRSA isolates carried SCCmec type III 7/11 (63%). Three isolates 3/11 (27%) and 1/11 (9.0%) carried SCCmec type II and IVd respectively. Amplification of the universal insertion site of the SCCmec (orfX) and attachment site (attB) showed that all 16 S. aureus isolates were positive for the orfX gene, while only 7 were positive for the attB gene. Phylogenetic diversity showed that the isolates clustered around strains with features similar to a community acquired MRSA. In conclusion, a high carriage rate of SCCmec type III was observed. The result also showed that all the S. aureus isolates have the orfX structure; however, not all isolates possesses the attB site on the 3' end of the orfX region.
  5. Hussein EA, Hair-Bejo M, Liew PS, Adamu L, Omar AR, Arshad SS, et al.
    Microb Pathog, 2019 Apr;129:195-205.
    PMID: 30738178 DOI: 10.1016/j.micpath.2019.01.049
    Infectious bursal disease is one of an OIE list of notifiable diseases. Chicken is the only host that manifests clinical signs and its pathogenicity is correlated with the distribution of antigens in organs. This study was conducted to determine disease pathogenesis and virus tissue tropism by in situ PCR, immunoperoxidase staining (IPS), and HE staining. Twenty four chickens were infected with very virulent Infectious Bursal Disease Virus (vvIBDV). Fifteen chickens were kept as a control group. Infected chickens were sacrificed at hrs 2, 4, 6, 12, days 1, 2, 4, and 6 post-inoculation (pi). While, control chickens were euthanized on days 0, 1, 2, 4, and 6 pi. Different tissues were collected, fixed in 10% buffered formalin, and processed. At hr 2 pi, virus was detected in intestinal, junction of the proventriculus and gizzard, cecal tonsil, liver, kidney, and bursa of Fabricius. At hr 4 pi, virus reached spleen, and at hr 6 pi, it entered thymus. At hr 12 pi, virus concentration increased in positive tissues. The latest invaded tissue was muscle on day 1 pi. Secondary viraemia occurred during 12-24 h pi. In situ PCR was the most sensitive technique to highlight obscure points of infection in this study.
  6. Hussein EA, Hair-Bejo M, Omar AR, Arshad SS, Hani H, Balakrishnan KN, et al.
    Microb Pathog, 2019 Apr;129:213-223.
    PMID: 30771470 DOI: 10.1016/j.micpath.2019.02.017
    Limited deep studies are available in the field of early stages of pathogenesis of Newcastle disease virus (NDV) infection and tissue tropism of NDV. In this study, 24 specific pathogen free (SPF) chickens of white leghorn breed were infected with Newcastle disease (ND) by intranasal administration of 10⁵ 50% EID50/0.1 mL of velogenic NDV (vNDV). A second group of 15 chickens were kept as a control group. Chickens were monitored every day to record clinical signs. Infected chickens were euthanized by cervical dislocation at successive times, namely at hours (hrs) 2, 4, 6, 12, days 1, 2, 4, and 6 post-inoculation (pi). Whereas, control group chickens were euthanized on days 0, 1, 2, 4, and 6 pi. Tissues of brain, trachea, lung, caecal tonsil, liver, kidney, spleen, heart, proventriculus, intestine, and thymus were collected, fixed in 10% buffered formalin, embedded in paraffin, and sectioned. HS staining, immunoperoxidase staining (IPS) and in situ PCR were applied. It was concluded that at hr 2 pi, virus seemed to be inclined to trachea and respiratory tract. Meanwhile, it attacked caecal tonsils, intestine and bursa of Fabricus. While primary viraemia was ongoing, virus created footing in kidney and thymus. At hr 4 pi, proventriculus, liver, and spleen were attacked. However, at hr 6 pi, brain and heart were involved. Secondary viraemia probably started as early as hr 12 pi since all collected tissues were positive. Tissue tropism was determined in trachea, caecal tonsil, liver, bursa of Fabricius, intestine, proventriculus, lung, spleen, thymus, kidney, heart, and brain.
  7. Rivas-Cáceres RR, Luis Stephano-Hornedo J, Lugo J, Vaca R, Del Aguila P, Yañez-Ocampo G, et al.
    Microb Pathog, 2018 Feb;115:358-362.
    PMID: 29305184 DOI: 10.1016/j.micpath.2017.12.075
    This study explored the use of silver nanoparticle as a bactericidal against the propagation of Clavibacter michiganensis onto tomatoes (Lycopersicon esculentum Mill). In Mexico, tomato production covers about 73% of the total vegetable production but it is affected by outbreak of bacteria canker caused by Clavibacter michiganensis subspecies michiganensis (Cmm). Silver ions possess inhibitor properties, bactericides and high specter antimicrobials. In this study, 6 groups of culture were prepared using 6 different petri dishes where silver nanoparticles of varying concentrations (120, 84, 48, 24, 12 and 0 μg) were added. Furthermore, each group was observed for 20 min, 1, 2, 12 and 24 h. The optimum concentration is 84 μg, which shows an average of 2 Cmm colonies after 20 min. Further increase to 120 μg shows no significant change. However, the average colonies was observed for 48 μg after 1, 2, 12, and 24 h. The obtained results indicate that silver nanoparticles are a promising inhibitor, bactericide and high a specter antimicrobial for treatment or prevention of Cmm.
  8. Bande F, Arshad SS, Bejo MH, Omar AR, Moeini H, Khadkodaei S, et al.
    Microb Pathog, 2020 Dec;149:104560.
    PMID: 33068733 DOI: 10.1016/j.micpath.2020.104560
    Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.
  9. Isiaku AI, Sabri MY, Ina-Salwany MY, Hassan MD, Tanko PN, Bello MB
    Microb Pathog, 2017 Jan;102:59-68.
    PMID: 27890651 DOI: 10.1016/j.micpath.2016.10.029
    Biofilms are aggregates of attached microbial organisms whose existence on tissues is often recognised as a mechanism for the establishment of most chronic diseases. Herein we investigated the ability of piscine Streptococcus agalactiae, an important aquatic pathogen, for adaptation to this sessile lifestyle in vitro and in the brain of a tilapia fish model. Piscine S. agalactiae exhibited a weak attachment to polystyrene plates and expressed a low biofilm phenotype under the study conditions. Furthermore, fluorescent in situ hybridization and confocal laser scanning microscopy revealed discrete aggregates of attached S. agalactiae within brain tissues and around meningeal surfaces. They were embedded in an exopolysaccharide containing matrix, intractable to inflammatory response and showed some level of resistance to penicillin despite proven susceptibility on sensitivity test. Intracellular bacterial aggregates were also observed, moreover, antibody mediated response was not demonstrated during infection. Nucleated erythrocytes appear to facilitate brain invasion possibly via the Trojan horse mechanism leading to a granulomatous inflammation. We have demonstrated that biofilm is associated with persistence of S. agalactiae and the development of chronic meningoencephalitis in fish.
  10. Puah SM, Fong SP, Kee BP, Puthucheary SD, Chua KH
    Microb Pathog, 2022 Jan;162:105345.
    PMID: 34896547 DOI: 10.1016/j.micpath.2021.105345
    Recently, Elizabethkingia species have gained attention as a cause of life-threatening infections. The identification via phenotypic methods of three important species- Elizabethkingia meningoseptica, E. anophelis and E. miricola is difficult. Our objectives were to re-assess 30 archived Flavobacterium meningosepticum isolates using 16S rRNA gene sequencing, ERIC-PCR, and biofilm formation assay. Twenty-four isolates were re-identified as E. anophelis and 6 as E. miricola. All of them had the ability to form biofilm as shown in microtiter plate assay based on crystal violet staining. Overall, E. anophelis had a higher specific biofilm formation index compared to E. miricola. A total of 42% (10 out of 24) of E. anophelis were classified as strong, 29% (7 out of 24) as moderate and 29% (7 out of 24) as weak biofilm producers. E. miricola, 17% (1 out of 6) isolates were strong biofilm producers, 50% (3 out of 6) moderate and 33% (2 out of 6) were weak producers. E. anophelis from tracheal secretions were significantly associated with (p = 0.0361) strong biofilm formation. In summary, this study showed that the isolates originally identified as F. meningosepticum were re-classified using the 16S rRNA gene as one of two Elizabethkingia species. The ability of E. anophelis to form strong biofilm in endotracheal tubes indicates their probable role in the pathogenesis of Elizabethkingia infections.
  11. Lau TV, Puah SM, Tan JMA, Merino S, Puthucheary SD, Chua KH
    Microb Pathog, 2023 Apr;177:106059.
    PMID: 36878334 DOI: 10.1016/j.micpath.2023.106059
    Aeromonas dhakensis possesses dual flagellar systems for motility under different environments. Flagella-mediated motility is necessary for biofilm formation through an initial attachment of bacteria to the surface, but this has not been elucidated in A. dhakensis. This study investigates the role of polar (flaH, maf1) and lateral (lafB, lafK and lafS) flagellar genes in the biofilm formation of a clinical A. dhakensis strain WT187 isolated from burn wound infection. Five deletion mutants and corresponding complemented strains were constructed using pDM4 and pBAD33 vectors, respectively, and analyzed for motility and biofilm formation using crystal violet staining and real-time impedance-based assays. All mutants were significantly reduced in swimming (p 
  12. Suleman M, Khan TA, Ejaz H, Maroof S, Alshammari A, Albekairi NA, et al.
    Microb Pathog, 2024 Apr;189:106572.
    PMID: 38354987 DOI: 10.1016/j.micpath.2024.106572
    The JCV (John Cunningham Virus) is known to cause progressive multifocal leukoencephalopathy, a condition that results in the formation of tumors. Symptoms of this condition such as sensory defects, cognitive dysfunction, muscle weakness, homonosapobia, difficulties with coordination, and aphasia. To date, there is no specific and effective treatment to completely cure or prevent John Cunningham polyomavirus infections. Since the best way to control the disease is vaccination. In this study, the immunoinformatic tools were used to predict the high immunogenic and non-allergenic B cells, helper T cells (HTL), and cytotoxic T cells (CTL) epitopes from capsid, major capsid, and T antigen proteins of JC virus to design the highly efficient subunit vaccines. The specific immunogenic linkers were used to link together the predicted epitopes and subjected to 3D modeling by using the Robetta server. MD simulation was used to confirm that the newly constructed vaccines are stable and properly fold. Additionally, the molecular docking approach revealed that the vaccines have a strong binding affinity with human TLR-7. The codon adaptation index (CAI) and GC content values verified that the constructed vaccines would be highly expressed in E. coli pET28a (+) plasmid. The immune simulation analysis indicated that the human immune system would have a strong response to the vaccines, with a high titer of IgM and IgG antibodies being produced. In conclusion, this study will provide a pre-clinical concept to construct an effective, highly antigenic, non-allergenic, and thermostable vaccine to combat the infection of the John Cunningham virus.
  13. Shamsian S, Nabipour I, Mohebbi G, Baghban N, Zare M, Zandi K, et al.
    Microb Pathog, 2024 Jan;186:106486.
    PMID: 38056601 DOI: 10.1016/j.micpath.2023.106486
    In this study, we investigated the potential in vitro anti-HSV-1 activities of the Cassiopea andromeda jellyfish tentacle extract (TE) and its fractions, as well as computational work on the thymidine kinase (TK) inhibitory activity of the identified secondary metabolites. The LD50, secondary metabolite identification, preparative and analytical chromatography, and in silico TK assessment were performed using the Spearman-Karber, GC-MS, silica gel column chromatography, RP-HPLC, LC-MS, and docking methods, respectively. The antiviral activity of TE and the two purified compounds Ca2 and Ca7 against HSV-1 in Vero cells was evaluated by MTT and RT-PCR assays. The LD50 (IV, mouse) values of TE, Ca2, and Ca7 were 104.0 ± 4, 5120 ± 14, and 197.0 ± 7 (μg/kg), respectively. They exhibited extremely effective antiviral activity against HSV-1. The CC50 and MNTD of TE, Ca2, and Ca7 were (125, 62.5), (25, 12.5), and (50, 3.125) μg/ml, respectively. GC-MS analysis of the tentacle extract revealed seven structurally distinct chemical compositions. Four of the seven compounds had a steroid structure. According to the docking results, all compounds showed binding affinity to the active sites of both thymidine kinase chains. Among them, the steroid compound Pregn-5-ene-3,11-dione, 17,20:20,21 bis [methylenebis(oxy)]-, cyclic 3-(1,2-ethane diyl acetal) (Ca2) exhibited the highest affinity for both enzyme chains, surpassing that of standard acyclovir. In silico data confirmed the experimental results. We conclude that the oxosteroid Ca2 may act as a potent agent against HSV-1.
  14. Assefi M, Bijan Rostami R, Ebrahimi M, Altafi M, Tehrany PM, Zaidan HK, et al.
    Microb Pathog, 2023 Apr 01;179:106096.
    PMID: 37011734 DOI: 10.1016/j.micpath.2023.106096
    Cholesterol plays critical functions in arranging the biophysical attributes of proteins and lipids in the plasma membrane. For various viruses, an association with cholesterol for virus entrance and/or morphogenesis has been demonstrated. Therefore, the lipid metabolic pathways and the combination of membranes could be targeted to selectively suppress the virus replication steps as a basis for antiviral treatment. U18666A is a cationic amphiphilic drug (CAD) that affects intracellular transport and cholesterol production. A robust tool for investigating lysosomal cholesterol transfer and Ebola virus infection is an androstenolone derived termed U18666A that suppresses three enzymes in the cholesterol biosynthesis mechanism. In addition, U18666A inhibited low-density lipoprotein (LDL)-induced downregulation of LDL receptor and triggered lysosomal aggregation of cholesterol. According to reports, U18666A inhibits the reproduction of baculoviruses, filoviruses, hepatitis, coronaviruses, pseudorabies, HIV, influenza, and flaviviruses, as well as chikungunya and flaviviruses. U18666A-treated viral infections may act as a novel in vitro model system to elucidate the cholesterol mechanism of several viral infections. In this article, we discuss the mechanism and function of U18666A as a potent tool for studying cholesterol mechanisms in various viral infections.
  15. Maqbool A, Paul BT, Jesse FFA, Teik Chung EL, Mohd Lila MA, Haron AW
    Microb Pathog, 2021 Aug;157:105001.
    PMID: 34048891 DOI: 10.1016/j.micpath.2021.105001
    BACKGROUND: We investigated the biomarkers, immune responses and cellular changes in vaccinated and non-vaccinated goats experimentally challenged with M. haemolytica serotype A2 under rainy and hot tropical conditions. A total of twenty-four clinically healthy, non-pregnant, female goats randomly allocated to 2 groups of 12 goats each were used for the study. The 12 goats in each season were subdivided into three groups (n = 4), which served as the control (G-NEG), non-vaccinated (G-POS), and vaccinated (G-VACC). In week-1, the G-VACC received 2 mL of alum-precipitated pasteurellosis vaccine while G-POS and G-NEG received 2 ml of sterile PBS. In week 2, the G-POS and G-VACC received 1 mL intranasal spray containing 105 CFU of M. haemolytica serotype A2. Inoculation was followed by daily monitoring and weekly bleeding for eight weeks to collect data and serum for biomarkers and immune responses using commercial ELISA test kits. The goats were humanely euthanised at the end of the experiments to collect lungs and the submandibular lymph nodes tissue samples for gross and histopathological examinations.

    RESULTS: Regardless of the season, we have observed a significant (p 

  16. Amal MNA, Zarif ST, Suhaiba MS, Aidil MRM, Shaqinah NN, Zamri-Saad M, et al.
    Microb Pathog, 2018 01;114:251-254.
    PMID: 29217326 DOI: 10.1016/j.micpath.2017.11.069
    This study describes the susceptibility of different fish gender following acute Streptococcus agalactiae infection by using Javanese medaka Oryzias javanicus as test fish. The fish were grouped into four groups, which were: (1) all-male; (2) all-female; (3) mixed-gender (1 male: 1 female ratio); and (4) control non-infected (1 male: 1 female ratio). The fish in group 1, 2 and 3 were intraperitoneally exposed to 5.4 × 108 CFU/mL of S. agalactiae, while for group 4, the fish were exposed using sterile broth. The main clinical signs and histopathological changes of infected Javanese medaka were commonly observed in S. agalactiae infected fishes. However, no difference on clinical signs and histopathological changes of fish in group 1, 2 and 3 were noticed. The Javanese medaka mortality in group 1, 2 and 3 were observed from 4 h post infection (hpi) to 6 hpi, with the cumulative mortality from 3% to 30%. Then, the mortality increased at 12 hpi, with the range from 53% to 80%. However, 100% of the infected fish dead at 24 hpi. No clinical sign, histopathological change and fish mortality recorded in group 4. Generally, the clinical signs, mortality patterns, cumulative mortality and histopathological changes of Javanese medaka infected by S. agalactiae did not show any difference between the all-male, all-female and mixed-gender groups. This indicates that the susceptibility of fish to S. agalactiae infection is not influenced by their gender.
  17. Kang TL, Velappan RD, Kabir N, Mohamad J, Rashid NN, Ismail S
    Microb Pathog, 2019 Mar;128:90-96.
    PMID: 30584901 DOI: 10.1016/j.micpath.2018.12.042
    Haemorrhagic septicaemia (HS) is a well-known high fatality septicaemic disease happening among bovines. The disease is caused by the Pasteurella multocida serotype B:2 bacteria. P. multocida B:2 has high mortality and morbidity rates and is spread through the intranasal and oral routes in bovines. In this study, our aim was to investigate the efficacy of the recombinant protein vaccine, ABA392/pET30a via intranasal inoculation by targeting the mucosal immunity. The constructed recombinant protein vaccine ABA392/pET30a was subjected to an animal study using Sprague Dawley rats. The study was divided into two parts: active and passive immunization studies. Both studies were carried out through the determination of immunogenicity (using Total White Blood Cell (TWBC) Count with Indirect ELISA) and histopathogenicity, analyzing (Bronchus Associated Lymphoid Tissue (BALT) formation) in lungs. As a result, the IgA and IgG development of both tested groups: group 1 (50μg/mL protein vaccine) and group 2 (100μg/mL protein vaccine) showed equivalent with the positive control group 4 (formalin-killed P. multocida B:2). However, there was a significant difference when compared with the negative control group 3 (normal saline). These results demonstrate that both the protein vaccine at the concentration 50μg/mL and 100μg/mL have the same efficacy as the commercially available positive control vaccine. From the studies, higher concentration of protein vaccine at 100μg/mL showed higher development of both IgA and IgG compared to 50μg/mL protein vaccine. Higher and rapid development of IgA compared to IgG showed that mucosal immunity has been induced through the intranasal administration of the protein vaccine. In addition, leucocytosis was observed at each dose of vaccination showed that the protein vaccine is capable to induce the immune responses of the host. Histopathogenicity studies of the vaccinated groups showed more BALT formation and no severe lesions after challenge compared to the negative control group. Besides, no inflammatory onsite or anaphylactic responses were observed after the intranasal inoculation which proved to be safer and provided longer lasting immunity. Therefore, recombinant protein vaccine ABA392/pET30a could be a potential candidate for intranasal administration which can provoke mucosal immunity against HS disease.
  18. Lone JB, Koh WY, Parray HA, Paek WK, Lim J, Rather IA, et al.
    Microb Pathog, 2018 Nov;124:266-271.
    PMID: 30138755 DOI: 10.1016/j.micpath.2018.08.036
    Obesity and obesity-related comorbidities have transformed into a global epidemic. The number of people suffering from obesity has increased dramatically within the past few decades. This rise in obesity cannot alone be explained by genetic factors; however, diet, environment, lifestyle, and presence of other diseases undoubtedly contribute towards obesity etiology. Nevertheless, evidence suggests that alterations in the gut microbial diversity and composition have a role to play in energy assimilation, storage, and expenditure. In this review, the impact of gut microbiota composition on metabolic functionalities, and potential therapeutics such as gut microbial modulation to manage obesity and its associated comorbidities are highlighted. Optimistically, an understanding of the gut microbiome could facilitate the innovative clinical strategies to restore the normal gut flora and improve lifestyle-related diseases in the future.
  19. Hambali IU, Bhutto KR, Jesse FFA, Lawan A, Odhah MN, Wahid AH, et al.
    Microb Pathog, 2018 Nov;124:101-105.
    PMID: 30114463 DOI: 10.1016/j.micpath.2018.08.017
    Mastitis is an inflammatory condition of the udder that occurs as a result of the release of leucocytes into the udder in a response to bacterial invasion. The major causes of mastitis are an array of gram positive and negative bacteria, however, algae, virus, fungi, mechanical or thermal injury to the gland have also been identified as possible causes. Mastitis vaccines are yet to be developed using Malaysian local isolate of bacteria. The objective of the present experimental trial was to develop a monovalent vaccine against mastitis using S. aureus of Malaysian isolate and to evaluate the clinical responses such as temperature, respiratory rates and heart rates in vaccinated cows. S. aureus is a major causative bacteria in clinical and subclinical types of mastitis in cows. Four concentrations of the bacterin (106, 107, 108 and 109 cfu/ml of the local isolate of S. aureus) were prepared using Aluminium potassium sulfate adjuvant. Thirty cows were grouped into four treatment groups (B, C, D and E) with a fifth group as control (A). These groups were vaccinated intramuscularly(IM) with the prepared monovalent vaccine and its influence on the vital signs were intermittently measured. The mean of rectal temperature was significantly different (p˂ 0.05) at 0hr Post Vaccination [1]" in groups D and E (39.5 ± 0.15 °C and 39.4 ± 0.15 °C respectively) and at 3 h PV in groups C, D and E (39.8 ± 0.14 °C, 39.9 ± 0.14 °C and 40.3 ± 0.14 °C respectively) compared to the control group. This indicated a sharp increased rectal temperatures between 0hr and 3 h PV in groups C, D and E which later declined at 24 h PV. The mean of rectal temperature of group E was significantly different (p˂ 0.05) at weeks 1 and 2 PV (39.87 ± 0.19 °C and 39.80 ± 0.18 °C respectively) compared to the control group. The mean of heart rate was significantly different (p˂ 0.05) at week 1 PV in groups D and E (83.0 ± 3.8 beats/minute and 80.0 ± 3.8 °C respectively) compared to control. A trending decrease was however observed in heart rates of group E from weeks through 4 PV and in group D from weeks 1 through 3 PV. The mean of respiratory rates was significantly different (p˂ 0.05) at week 3 PV in group B and D (31.0 ± 1.2 breaths/minute and 28.0 ± 1.2 breaths/minute) compared to control. In conclusion, this study highlights responses of these vital signs due to vaccination against S. aureus causing mastitis in cows. To the best of our knowledge the findings of this study adds value to the shallow literature on vital signs alterations in cows vaccinated against mastitis as elevated levels of temperature and heart rates of group D and E indicated obvious response.
  20. Osman AY, Saharee AA, Jesse FF, Kadir AA
    Microb Pathog, 2017 Sep;110:365-374.
    PMID: 28710016 DOI: 10.1016/j.micpath.2017.07.014
    In this study, we developed a mouse model and characterized the effects of intranasal inoculation of virulent Brucella melitensis strain 16M and its lipopolysaccharide (LPS). The effects of the exposure were compared with respective control groups. Both Brucella melitensis-infected and LPS-infected groups showed no significant clinical presentation with minor relevance in the mortality associated with the infection. In Brucella melitensis-infected group, significant histopathological changes in comparison to the LPS infected group with increase bacterial burden in the lungs, reproductive and reticuloendothelial organs were observed. However, both infected groups showed elevated levels of pro-inflammatory cytokine expression (IL-1β and IL6) and antibody production (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes was recorded in both infected groups throughout the experimental period. This is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in mouse model after intranasal inoculation with B. melitensis and its lipopolysaccharide. The study revealed a significant difference between infected and control groups with overlap in clinical, pathological, and immunological responses as well as sex related hormonal changes resulting from the infections.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links