Displaying publications 1 - 20 of 155 in total

Abstract:
Sort:
  1. Ikram R, Mohamed Jan B, Vejpravova J, Choudhary MI, Zaman Chowdhury Z
    Nanomaterials (Basel), 2020 Oct 11;10(10).
    PMID: 33050617 DOI: 10.3390/nano10102004
    Nanocomposite materials have distinctive potential for various types of captivating usage in drilling fluids as a well-designed solution for the petroleum industry. Owing to the improvement of drilling fluids, it is of great importance to fabricate unique nanocomposites and advance their functionalities for amplification in base fluids. There is a rising interest in assembling nanocomposites for the progress of rheological and filtration properties. A series of drilling fluid formulations have been reported for graphene-derived nanocomposites as additives. Over the years, the emergence of these graphene-derived nanocomposites has been employed as a paradigm to formulate water-based drilling fluids (WBDF). Herein, we provide an overview of nanocomposites evolution as engineered materials for enhanced rheological attributes in drilling operations. We also demonstrate the state-of-the-art potential graphene-derived nanocomposites for enriched rheology and other significant properties in WBDF. This review could conceivably deliver the inspiration and pathways to produce novel fabrication of nanocomposites and the production of other graphenaceous materials grafted nanocomposites for the variety of drilling fluids.
  2. Amer AAG, Othman N, Sapuan SZ, Alphones A, Hassan MF, Al-Gburi AJA, et al.
    Nanomaterials (Basel), 2023 Jul 06;13(13).
    PMID: 37446531 DOI: 10.3390/nano13132015
    A dual-band metasurface (MS) with a wide reception angle operating at Wi-Fi bands (2.4 GHz and 5.4 GHz) is presented for electromagnetic (EM) energy harvesting applications. The MS unit cell comprises a subwavelength circular split ring resonator printed on the low-loss substrate. An air layer is sandwiched between two low-loss substrates to enhance the harvesting efficiency at operating frequencies. One of the main advantages of the proposed MS is that it uses only one harvesting port (via) to channel the captured power to the optimized load (50 Ω), which simplifies the design of a combined power network. According to the results of full-wave EM simulations, the proposed MS has a near-unity efficiency of 97% and 94% at 2.4 GHz and 5.4 GHz, respectively, for capturing the power of incident EM waves with normal incidence. Furthermore, the proposed MS harvester achieves good performance at up to 60° oblique incidence. To validate simulations, the MS harvester with 5 × 5-unit cells is fabricated and tested, and its EM properties are measured, showing good agreement with the simulation results. Because of its high efficiency, the proposed MS harvester is suitable for use in various microwave applications, such as energy harvesting and wireless power transfer.
  3. Nasir S, Hussein MZ, Yusof NA, Zainal Z
    Nanomaterials (Basel), 2017 Jul 13;7(7).
    PMID: 28703757 DOI: 10.3390/nano7070182
    Herein, a new approach was proposed to produce reduced graphene oxide (rGO) from graphene oxide (GO) using various oil palm wastes: oil palm leaves (OPL), palm kernel shells (PKS) and empty fruit bunches (EFB). The effect of heating temperature on the formation of graphitic carbon and the yield was examined prior to the GO and rGO synthesis. Carbonization of the starting materials was conducted in a furnace under nitrogen gas for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 °C/min. The GO was further synthesized from the as-carbonized materials using the 'improved synthesis of graphene oxide' method. Subsequently, the GO was reduced by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 1 h. The IG/ID ratio calculated from the Raman study increases with the increasing of the degree of the graphitization in the order of rGO from oil palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the as-prepared materials were performed using the Brunauer Emmett Teller-Nitrogen (BET-N₂) adsorption-desorption isotherms method. The lower BET surface area of 8 and 15 m2 g-1 observed for rGOCG and rGOOPL, respectively could be due to partial restacking of GO layers and locally-blocked pores. Relatively, this lower BET surface area is inconsequential when compared to rGOPKS and rGOEFB, which have a surface area of 114 and 117 m² g-1, respectively.
  4. Saleem H, Goh PS, Saud A, Khan MAW, Munira N, Ismail AF, et al.
    Nanomaterials (Basel), 2022 Nov 24;12(23).
    PMID: 36500777 DOI: 10.3390/nano12234154
    Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.
  5. Ismail AF, Goh PS, Yusof N
    Nanomaterials (Basel), 2023 May 20;13(10).
    PMID: 37242102 DOI: 10.3390/nano13101686
    The field of membrane technology has experienced significant growth in recent years, especially in the areas of wastewater treatment and desalination [...].
  6. Mao PH, Kwon E, Chang HC, Bui HM, Phattarapattamawong S, Tsai YC, et al.
    Nanomaterials (Basel), 2022 Dec 09;12(24).
    PMID: 36558250 DOI: 10.3390/nano12244396
    As cobalt (Co) has been the most useful element for activating Oxone to generate SO4•-, this study aims to develop a hierarchical catalyst with nanoscale functionality and macroscale convenience by decorating nanoscale Co-based oxides on macroscale supports. Specifically, a facile protocol is proposed by utilizing Cu mesh itself as a Cu source for fabricating CuCo2O4 on Cu mesh. By changing the dosages of the Co precursor and carbamide, various nanostructures of CuCo2O4 grown on a Cu mesh can be afforded, including nanoscale needles, flowers, and sheets. Even though the Cu mesh itself can be also transformed to a Cu-Oxide mesh, the growth of CuCo2O4 on the Cu mesh significantly improves its physical, chemical, and electrochemical properties, making these CuCo2O4@Cu meshes much more superior catalysts for activating Oxone to degrade the Azo toxicant, Acid Red 27. More interestingly, the flower-like CuCo2O4@Cu mesh exhibits a higher specific surface area and more superior electrochemical performance, enabling the flower-like CuCo2O4@Cu mesh to show the highest catalytic activity for Oxone activation to degrade Acid Red 27. The flower-like CuCo2O4@Cu mesh also exhibits a much lower Ea of Acid Red 27 degradation than the reported catalysts. These results demonstrate that CuCo2O4@Cu meshes are advantageous heterogeneous catalysts for Oxone activation, and especially, the flower-like CuCo2O4@Cu mesh appears as the most effective CuCo2O4@Cu mesh to eliminate the toxic Acid Red 27.
  7. Wu ZH, Shih JY, Li YJ, Tsai YD, Hung TF, Karuppiah C, et al.
    Nanomaterials (Basel), 2022 Jan 26;12(3).
    PMID: 35159754 DOI: 10.3390/nano12030409
    To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5Mn1.5O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5Mn1.5O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge-discharge profiles and cycle life performance of LiNi0.5Mn1.5O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g-1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode retained its specific capacity (87 mAh g-1) of 80.1% after 500 cycles at a rate of 10 C. The Li4Ti5O12/LiNi0.5Mn1.5O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5Mn1.5O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system.
  8. Mohamad NA, Azis N, Jasni J, Kadir MZAA, Yunus R, Yaakub Z
    Nanomaterials (Basel), 2021 Mar 19;11(3).
    PMID: 33808641 DOI: 10.3390/nano11030786
    This experimental study aims to examine the partial discharge (PD) properties of palm oil and coconut oil (CO) based aluminum oxide (Al2O3) nanofluids with and without surfactants. The type of surfactant used in this study was sodium dodecyl sulfate (SDS). The volume concentrations range of Al2O3 dispersed in oil samples was varied from 0.001% to 0.05%. The ratio of surfactants to nanoparticles was set to 1:2. In total, two different types of refined, bleached and deodorized palm oil (RBDPO) and one type of CO were measured for PD. Mineral oil (MO) was also examined for comparison purpose. PDIV measurements for all samples were carried out based on rising voltage method whereby a needle-sphere electrode configuration with a gap distance of 50 mm was chosen in this study. Al2O3 improves the PDIVs of RBDPO, CO and MO whereby the highest improvements of PDIVs are 34%, 39.3% and 27%. The PD amplitude and repetition rate of RBDPO improve by 38% and 81% while for CO, it can increase up to 65% and 80% respectively. The improvement of PD amplitude and repetition rate for MO are 18% and 95%, regardless with and without SDS. Without SDS, the presence of Al2O3 could cause 26%, 75% and 65% reductions of the average emission of light signals for RBDPOA, RBDPOB and CO with the improvement of PD characteristics but both events do not correlate at the same volume concentration of Al2O3. On the other hand, the average emission of light signal levels of the oils increases with the introduction of SDS. The emission of light signal in MO does not correlate with the PD characteristics improvement either with or without SDS.
  9. Abdullah Issa M, Z Abidin Z, Sobri S, Rashid S, Adzir Mahdi M, Azowa Ibrahim N, et al.
    Nanomaterials (Basel), 2019 Oct 22;9(10).
    PMID: 31652527 DOI: 10.3390/nano9101500
    The current research mainly focuses on transforming low-quality waste into value-added nanomaterials and investigating various ways of utilising them. The hydrothermal preparation of highly fluorescent N-doped carbon dots (N-CDs) was obtained from the carboxymethylcellulose (CMC) of oil palm empty fruit bunches and linear-structured polyethyleneimines (LPEI). Transmission electron microscopy (TEM) analysis showed that the obtained N-CDs had an average size of 3.4 nm. The N-CDs were monodispersed in aqueous solution and were strongly fluorescent under the irradiation of ultra-violet light. A detailed description of the morphology and shape was established using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was shown that LPEI were successfully tuned the fluorescence (PL) properties of CDs in both the intrinsic and surface electronic structures, and enhanced the quantum yield (QY) up to 44%. The obtained N-CDs exhibited remarkable PL stability, long lifetime and pH-dependence behaviour, with the excitation/emission maxima of 350/465.5 nm. Impressively, PL enhancement and blue-shifted emission could be seen with the dilution of the original N-CDs solution. The obtained N-CDs were further applied as fluorescent probe for the identification of Cu2+ in aqueous media. The mechanism could be attributed to the particularly high thermodynamic affinity of Cu2+ for the N-chelate groups over the surface of N-CDs and the fast metal-to-ligand binding kinetics. The linear relationship between the relative quenching rate and the concentration of Cu2+ were applied between 1-30 µM, with a detection limit of 0.93 µM. The fluorescent probe was successfully applied for the detection of Cu2+ in real water. Moreover, a solid-state film of N-CDs was prepared in the presence of poly (vinyl alcohol) (PVA) polymer and found to be stable even after 72-h of continuous irradiation to UV-lamp. In contrast to the aqueous N-CDs, the composite film showed only an excitation independent property, with enhanced PL QY of around 47%. Due to the strong and stable emission nature of N-CDs in both aqueous and solid conditions, the obtained N-CDs are ideal for reducing the overall preparation costs and applying them for various biological and environmental applications in the future.
  10. Nizam NUM, Hanafiah MM, Woon KS
    Nanomaterials (Basel), 2021 Dec 07;11(12).
    PMID: 34947673 DOI: 10.3390/nano11123324
    This paper provides a comprehensive review of 71 previous studies on the life cycle assessment (LCA) of nanomaterials (NMs) from 2001 to 2020 (19 years). Although various studies have been carried out to assess the efficiency and potential of wastes for nanotechnology, little attention has been paid to conducting a comprehensive analysis related to the environmental performance and hotspot of NMs, based on LCA methodology. Therefore, this paper highlights and discusses LCA methodology's basis (goal and scope definition, system boundary, life cycle inventory, life cycle impact assessment, and interpretation) to insights into current practices, limitations, progress, and challenges of LCA application NMs. We found that there is still a lack of comprehensive LCA study on the environmental impacts of NMs until end-of-life stages, thereby potentially supporting misleading conclusions, in most of the previous studies reviewed. For a comprehensive evaluation of LCA of NMs, we recommend that future studies should: (1) report more detailed and transparent LCI data within NMs LCA studies; (2) consider the environmental impacts and potential risks of NMs within their whole life cycle; (3) adopt a transparent and prudent characterization model; and (4) include toxicity, uncertainty, and sensitivity assessments to analyze the exposure pathways of NMs further. Future recommendations towards improvement and harmonization of methodological for future research directions were discussed and provided. This study's findings redound to future research in the field of LCA NMs specifically, considering that the release of NMs into the environment is yet to be explored due to limited understanding of the mechanisms and pathways involved.
  11. Mohamad Kasim AS, Ariff AB, Mohamad R, Wong FWF
    Nanomaterials (Basel), 2020 Dec 10;10(12).
    PMID: 33321788 DOI: 10.3390/nano10122475
    Silver nanoparticles (AgNPs) have been found to have extensive biomedical and biological applications. They can be synthesised using chemical and biological methods, and coated by polymer to enhance their stability. Hence, the changes in the physico-chemical characteristics of AgNPs must be scrutinised due to their importance for biological activity. The UV-Visible absorption spectra of polyethylene glycol (PEG) -coated AgNPs displayed a distinctive narrow peak compared to uncoated AgNPs. In addition, High-Resolution Transmission Electron Microscopy analysis revealed that the shapes of all AgNPs, were predominantly spherical, triangular, and rod-shaped. Fourier-Transform Infrared Spectroscopy analysis further confirmed the role of PEG molecules in the reduction and stabilisation of the AgNPs. Moreover, dynamic light scattering analysis also revealed that the polydispersity index values of PEG-coated AgNPs were lower than the uncoated AgNPs, implying a more uniform size distribution. Furthermore, the uncoated and PEG-coated biologically synthesised AgNPs demonstrated antagonisms activities towards tested pathogenic bacteria, whereas no antagonism activity was detected for the chemically synthesised AgNPs. Overall, generalisation on the interrelations of synthesis methods, PEG coating, characteristics, and antimicrobial activity of AgNPs were established in this study.
  12. Al-Hada NM, Md Kasmani R, Kasim H, Al-Ghaili AM, Saleh MA, Banoqitah EM, et al.
    Nanomaterials (Basel), 2021 Aug 22;11(8).
    PMID: 34443973 DOI: 10.3390/nano11082143
    In the present work, a thermal treatment technique is applied for the synthesis of CexSn1-xO2 nanoparticles. Using this method has developed understanding of how lower and higher precursor values affect the morphology, structure, and optical properties of CexSn1-xO2 nanoparticles. CexSn1-xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely, cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent, polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with a higher energy band gap, while higher x values yield a larger particle size with a smaller energy band gap. Thus, products with lower x values may be suitable for antibacterial activity applications as smaller particles can diffuse through the cell wall faster, while products with higher x values may be suitable for solar cell energy applications as more electrons can be generated at larger particle sizes. The synthesized samples were profiled via a number of methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1-xO2 nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetragonal structure of CexSn1-xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were confirmed as the primary bonds of ready CexSn1-xO2 nanoparticle samples, whilst TEM analysis highlighted that the average particle size was in the range 6-21 nm as the precursor concentration (Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra used to determine the optical band gap based on the Kubelka-Munk equation showed that an increase in x value has caused a decrease in the energy band gap and vice versa.
  13. Shaker LM, Alamiery A, Takriff M, Wan Isahak WNR
    Nanomaterials (Basel), 2021 Aug 26;11(9).
    PMID: 34578506 DOI: 10.3390/nano11092190
    Thermally stable titanium dioxide nanoparticles (TiO2 NPs) doped with erbium ions (Er3+) are characterized by uniformity, low excitation energy, and high surface area. The impregnation methodology was used to enhance the optical properties of TiO2 NPs impregnated with various Er3+ ion contents. The synthesized Er3+/TiO2 samples were characterized by energy dispersive X-ray (EDX), metal mapping, UV-Visible spectrum, field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). The Er3+ ions, per our findings, were well-distributed on the TiO2 surface of the anatase phase and there was an insignificant difference in particle size, but there was no change in the particle shapes of the Er3+/TiO2 NPs structure. The maximum band gap degradation occurred with 1.8 wt % of Er3+/TiO2, where the energy gap degraded from 3.13 to 2.63 eV for intrinsic TiO2. The synthesized Er3+/TiO2 samples possess predominantly finely dispersed erbium ion species on the surface. Er3+ ions agglomeration on the surface increased with increasing ions in each sample. We found that 0.6 wt/vol % of Er+3/TiO2 is the best optical coating and produced satisfying results in terms of blocking the transmittance of blue wavelength without reducing the image quality.
  14. Firdaus RM, Desforges A, Emo M, Mohamed AR, Vigolo B
    Nanomaterials (Basel), 2021 Sep 17;11(9).
    PMID: 34578735 DOI: 10.3390/nano11092419
    Activation is commonly used to improve the surface and porosity of different kinds of carbon nanomaterials: activated carbon, carbon nanotubes, graphene, and carbon black. In this study, both physical and chemical activations are applied to graphene oxide by using CO2 and KOH-based approaches, respectively. The structural and the chemical properties of the prepared activated graphene are deeply characterized by means of scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and nitrogen adsorption. Temperature activation is shown to be a key parameter leading to enhanced CO2 adsorption capacity of the graphene oxide-based materials. The specific surface area is increased from 219.3 m2 g-1 for starting graphene oxide to 762.5 and 1060.5 m2 g-1 after physical and chemical activation, respectively. The performance of CO2 adsorption is gradually enhanced with the activation temperature for both approaches: for the best performances of a factor of 6.5 and 9 for physical and chemical activation, respectively. The measured CO2 capacities are of 27.2 mg g-1 and 38.9 mg g-1 for the physically and chemically activated graphene, respectively, at 25 °C and 1 bar.
  15. Asdaq SMB, Ikbal AMA, Sahu RK, Bhattacharjee B, Paul T, Deka B, et al.
    Nanomaterials (Basel), 2021 Jul 16;11(7).
    PMID: 34361227 DOI: 10.3390/nano11071841
    The SARS-CoV-2 outbreak is the COVID-19 disease, which has caused massive health devastation, prompting the World Health Organization to declare a worldwide health emergency. The corona virus infected millions of people worldwide, and many died as a result of a lack of particular medications. The current emergency necessitates extensive therapy in order to stop the spread of the coronavirus. There are various vaccinations available, but no validated COVID-19 treatments. Since its outbreak, many therapeutics have been tested, including the use of repurposed medications, nucleoside inhibitors, protease inhibitors, broad spectrum antivirals, convalescence plasma therapies, immune-modulators, and monoclonal antibodies. However, these approaches have not yielded any outcomes and are mostly used to alleviate symptoms associated with potentially fatal adverse drug reactions. Nanoparticles, on the other hand, may prove to be an effective treatment for COVID-19. They can be designed to boost the efficacy of currently available antiviral medications or to trigger a rapid immune response against COVID-19. In the last decade, there has been significant progress in nanotechnology. This review focuses on the virus's basic structure, pathogenesis, and current treatment options for COVID-19. This study addresses nanotechnology and its applications in diagnosis, prevention, treatment, and targeted vaccine delivery, laying the groundwork for a successful pandemic fight.
  16. Kian LK, Jawaid M, Alamery S, Vaseashta A
    Nanomaterials (Basel), 2021 Jan 20;11(2).
    PMID: 33498162 DOI: 10.3390/nano11020255
    The development of membrane technology from biopolymer for water filtration has received a great deal of attention from researchers and scientists, owing to the growing awareness of environmental protection. The present investigation is aimed at producing poly(D-lactic acid) (PDLA) membranes, incorporated with nanocrystalline cellulose (NCC) and cellulose nanowhisker (CNW) at different loadings of 1 wt.% (PDNC-I, PDNW-I) and 2 wt.% (PDNC-II PDNW-II). From morphological characterization, it was evident that the nanocellulose particles induced pore formation within structure of the membrane. Furthermore, the greater surface reactivity of CNW particles facilitates in enhancing the surface wettability of membranes due to increased hydrophilicity. In addition, both thermal and mechanical properties for all nanocellulose filled membranes under investigation demonstrated significant improvement, particularly for PDNW-I-based membranes, which showed improvement in both aspects. The membrane of PDNW-I presented water permeability of 41.92 L/m2h, when applied under a pressure range of 0.1-0.5 MPa. The investigation clearly demonstrates that CNWs-filled PDLA membranes fabricated for this investigation have a very high potential to be utilized for water filtration purpose in the future.
  17. Baig MF, Chen GM, Tso CP
    Nanomaterials (Basel), 2022 Oct 28;12(21).
    PMID: 36364597 DOI: 10.3390/nano12213821
    Partial filling of porous medium insert in a channel alleviates the tremendous pressure drop associated with a porous medium saturated channel, and enhances heat transfer at an optimum fraction of porous medium filling. This study pioneered an investigation into the viscous dissipative forced convective heat transfer in a parallel-plate channel, partially occupied with a porous medium at the core, under local thermal non-equilibrium condition. Solving the thermal energy equation along the Darcy-Brinkman equation, new exact temperature fields and Nusselt number are presented under symmetrical isoflux thermal boundary condition. Noteworthy is the heat flux bifurcation at the interface between the clear fluid and porous medium driven by viscous dissipation, in cases where the combined hydrodynamic resistance to fluid flow and thermal resistance to fluid conduction is considerable in low Darcy number porous medium insert. However, viscous dissipation does not affect the qualitative variation of the Nusselt number with the fraction of porous medium filling. By using Al2O3-Water nanofluid as the working fluid in a uniformly heated microchannel, partially filled with an optimum volume fraction of porous medium, the heat transfer coefficient improves as compared to utilizing water. The accompanied viscous dissipation however has a more adverse impact on the heat transfer coefficient of nanofluids with an increasing Reynolds number.
  18. Vinnik DA, Zhivulin VE, Trofimov EA, Gudkova SA, Punda AY, Valiulina AN, et al.
    Nanomaterials (Basel), 2021 Dec 23;12(1).
    PMID: 35009987 DOI: 10.3390/nano12010036
    Three high-entropy Sm(Eu,Gd)Cr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 perovskite solid solutions were synthesized using the usual ceramic technology. The XRD investigation at room temperature established a single-phase perovskite product. The Rietveld refinement with the FullProf computer program in the frame of the orthorhombic Pnma (No 62) space group was realized. Along with a decrease in the V unit cell volume from ~224.33 Å3 for the Sm-based sample down to ~221.52 Å3 for the Gd-based sample, an opposite tendency was observed for the unit cell parameters as the ordinal number of the rare-earth cation increased. The average grain size was in the range of 5-8 μm. Field magnetization was measured up to 30 kOe at 50 K and 300 K. The law of approach to saturation was used to determine the Ms spontaneous magnetization that nonlinearly increased from ~1.89 emu/g (Sm) up to ~17.49 emu/g (Gd) and from ~0.59 emu/g (Sm) up to ~3.16 emu/g (Gd) at 50 K and 300 K, respectively. The Mr residual magnetization and Hc coercive force were also determined, while the SQR loop squareness, k magnetic crystallographic anisotropy coefficient, and Ha anisotropy field were calculated. Temperature magnetization was measured in a field of 30 kOe. ZFC and FC magnetization curves were fixed in a field of 100 Oe. It was discovered that the Tmo magnetic ordering temperature downward-curve decreased from ~137.98 K (Sm) down to ~133.99 K (Gd). The spin glass state with ferromagnetic nanoinclusions for all the samples was observed. The average and Dmax maximum diameter of ferromagnetic nanoinclusions were calculated and they were in the range of 40-50 nm and 160-180 nm, respectively. The mechanism of magnetic state formation is discussed in terms of the effects of the A-site cation size and B-site poly-substitution on the indirect superexchange interactions.
  19. Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY
    Nanomaterials (Basel), 2021 Apr 19;11(4).
    PMID: 33921904 DOI: 10.3390/nano11041046
    Biofilm formation represents a significant cause of concern as it has been associated with increased morbidity and mortality, thereby imposing a huge burden on public healthcare system throughout the world. As biofilms are usually resistant to various conventional antimicrobial interventions, they may result in severe and persistent infections, which necessitates the development of novel therapeutic strategies to combat biofilm-based infections. Physicochemical modification of the biomaterials utilized in medical devices to mitigate initial microbial attachment has been proposed as a promising strategy in combating polymicrobial infections, as the adhesion of microorganisms is typically the first step for the formation of biofilms. For instance, superhydrophobic surfaces have been shown to possess substantial anti-biofilm properties attributed to the presence of nanostructures. In this article, we provide an insight into the mechanisms underlying biofilm formation and their composition, as well as the applications of nanomaterials as superhydrophobic nanocoatings for the development of novel anti-biofilm therapies.
  20. Arumugam M, Goh CK, Zainal Z, Triwahyono S, Lee AF, Wilson K, et al.
    Nanomaterials (Basel), 2021 Mar 16;11(3).
    PMID: 33809677 DOI: 10.3390/nano11030747
    Solid acid catalyzed cracking of waste oil-derived fatty acids is an attractive route to hydrocarbon fuels. HZSM-5 is an effective acid catalyst for fatty acid cracking; however, its microporous nature is susceptible to rapid deactivation by coking. We report the synthesis and application of hierarchical HZSM-5 (h-HZSM-5) in which silanization of pre-crystallized zeolite seeds is employed to introduce mesoporosity during the aggregation of growing crystallites. The resulting h-HZSM-5 comprises a disordered array of fused 10-20 nm crystallites and mesopores with a mean diameter of 13 nm, which maintain the high surface area and acidity of a conventional HZSM-5. Mesopores increase the yield of diesel range hydrocarbons obtained from oleic acid deoxygenation from ~20% to 65%, attributed to improved acid site accessibility within the hierarchical network.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links