Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Mohamed K, Alkaisi MM
    Nanotechnology, 2013 Jan 11;24(1):015302.
    PMID: 23221357 DOI: 10.1088/0957-4484/24/1/015302
    This work investigates the development of a nanofabrication process to achieve high aspect-ratio nanostructures on quartz substrates using electron beam lithography (EBL) patterning and fluorinated plasma etching processes. An imaging layer of a poly(methyl methacrylate) bi-layer resist was spun coated on quartz substrate and exposed by an e-beam with the designed patterns of sub-100 nm feature sizes using a Raith-150 EBL patterning tool. Additive pattern transfer was employed by depositing a 40 nm thick Nichrome layer on the resist pattern using a metal evaporator which was later lifted off by soaking in acetone. Nichrome was employed as an etch mask and an Oxford Plasmalab 80Plus reactive ion etcher was used for the etching process. The etching process was carried out in a gas mixture of CHF(3)/Ar with a flow rate ratio of 50/30 sccm, pressure of 20 mTorr, radiofrequency power of 200 W and at room temperature. These etching process parameters were found to achieve a 10 nm min(-1) etch rate and tall vertical side walls profile. An aspect-ratio of 10:1 was achieved on 60 nm feature size structures.
  2. Guarino V, Cruz Maya I, Altobelli R, Abdul Khodir WK, Ambrosio L, Alvarez Pèrez MA, et al.
    Nanotechnology, 2017 Oct 23.
    PMID: 29058684 DOI: 10.1088/1361-6528/aa9542
    Main limitation of conventional antibiotic therapies concerns the low efficacy to bacteria attacks for long treatment times. In this context, the integrated use of electrofluidodynamics (EFDs) - basically electrospinning and electrospraying - may represent an interesting route to design nanostructured platforms with controlled release to prevent the formation of bacterial biofilms in oral implant sites. They allow for the deposition of nanofibres and nanoparticles by different modes - i.e., sequential, simultaneous - for the fabrication of more efficacious systems in terms of degradation protection, pharmacokinetic control and drug distribution to the surrounding tissues. Herein, we will investigate EFDs processing modes and conditions to decorate polycaprolactone (PCL) nanofibres surfaces by chitosan (CS) nano-reservoirs for the administration of Amoxicillin Trihydrate (AMX-DHT) as innovative antibacterial treatment of the periodontal pocket.
  3. Almaki JH, Nasiri R, Idris A, Majid FA, Salouti M, Wong TS, et al.
    Nanotechnology, 2016 Mar 11;27(10):105601.
    PMID: 26861770 DOI: 10.1088/0957-4484/27/10/105601
    A stable, biocompatible and exquisite SPIONs-PEG-HER targeting complex was developed. Initially synthesized superparamagnetic iron oxide nanoparticles (SPIONs) were silanized using 3-aminopropyltrimethoxysilane (APS) as the coupling agent in order to allow the covalent bonding of polyethylene glycol (PEG) to the SPIONs to improve the biocompatibility of the SPIONs. SPIONs-PEG were then conjugated with herceptin (HER) to permit the SPIONs-PEG-HER to target the specific receptors expressed over the surface of the HER2+ metastatic breast cancer cells. Each preparation step was physico-chemically analyzed and characterized by a number of analytical methods including AAS, FTIR spectroscopy, XRD, FESEM, TEM, DLS and VSM. The biocompatibility of SPIONs-PEG-HER was evaluated in vitro on HSF-1184 (human skin fibroblast cells), SK-BR-3 (human breast cancer cells, HER+), MDA-MB-231 (human breast cancer cells, HER-) and MDA-MB-468 (human breast cancer cells, HER-) cell lines by performing MTT and trypan blue assays. The hemolysis analysis results of the SPIONs-PEG-HER and SPIONs-PEG did not indicate any sign of lysis while in contact with erythrocytes. Additionally, there were no morphological changes seen in RBCs after incubation with SPIONs-PEG-HER and SPIONs-PEG under a light microscope. The qualitative and quantitative in vitro targeting studies confirmed the high level of SPION-PEG-HER binding to SK-BR-3 (HER2+ metastatic breast cancer cells). Thus, the results reflected that the SPIONs-PEG-HER can be chosen as a favorable biomaterial for biomedical applications, chiefly magnetic hyperthermia, in the future.
  4. Seman RNAR, Azam MA, Ani MH
    Nanotechnology, 2018 Dec 14;29(50):502001.
    PMID: 30248022 DOI: 10.1088/1361-6528/aae3da
    Supercapacitors, based on fast ion transportation, are among the most promising energy storage solutions that can deliver fast charging-discharging within seconds and exhibit excellent cycling stability. The development of a good electrode material is one of the key factors in enhancing supercapacitor performance. Graphene (G), an allotrope of carbon that consists of a single layer of carbon atoms arranged in a hexagonal lattice, elicits research attention among scientists in the field of energy storage due to its remarkable properties, such as outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. Furthermore, numerous studies focus on 2D materials that are analogous to graphene as electrode supercapacitors, including transition metal dichalcogenides (TMDs). Recently, scientists and researchers are exploring TMDs because of the distinct features that make 2D TMDs highly attractive for capacitive energy storage. This study provides an overview of the structure, properties, synthesis methods, and electrochemical performance of G/TMD supercapacitors. Furthermore, the combination of G and TMDs to develop a hybrid structure may increase their energy density by introducing an asymmetric supercapacitor system. We will also discuss the future prospect of this system in the energy field.
  5. Rehman AU, Abbas Z, Hussain Z, Hasnain J, Asma M
    Nanotechnology, 2024 Apr 09;35(26).
    PMID: 38522098 DOI: 10.1088/1361-6528/ad373d
    In industrial and engineering fields including lamination, melt-spinning, continuous casting, and fiber spinning, the flow caused by a continually moving surface is significant. Therefore, the problem of ternary hybrid nanofluid flow over a moving surface is studied. This study explores the stability and statistical analyses of the magnetohydrodynamics (MHD) forced flow of the ternary hybrid nanofluid with melting heat transfer phenomena. The impacts of viscous dissipation, Joule heating, and thermal radiation are also included in the flow. Different fluids including ternary hybrid nanofluid, hybrid nanofluids, and nanofluids with base fluid ethylene glycol (EG) are examined and compared, where magnetite (Fe3O4) and silica (SiO2) are taken as the magnetic nanomaterials while silver (Ag) is chosen as the nonmagnetic nanomaterial. The skin friction coefficient and the local Nusselt number are estimated through regression analysis. By employing similarity transformations, the governing partial differential equations are converted into non-linear ordinary differential equations. Then, the least square method is applied to solve the equations analytically. Dual solutions are established in a particular range of moving parameterλ. Due to this, a stability test is implemented to find the stable solution by using the bvp4c function in MATLAB software. It is found that the first solution is the stable one while the second is unstable. The use of ternary hybrid nanomaterials improves the heat transport rate. The increasing values of the Eckert number enlarge the heat passage. The fluid velocity and temperature profiles for nonmagnetic nanomaterials are higher than that of magnetic nanomaterials. The uniqueness and originality of this study stems from the fact that, to the best of the authors' knowledge, it is the first to use this combination technique.
  6. Kozhina E, Panov D, Kovalets N, Apel P, Bedin SA
    Nanotechnology, 2023 Oct 11.
    PMID: 37820633 DOI: 10.1088/1361-6528/ad0247
    This study presents a method for fabricating a film-based heating element using a polymer material with an array of intersecting conductive elements embedded within it. Track-etched membranes (TM) with a thickness of 12 μm were used as the template, and their pores were filled with metal, forming a three-dimensional grid. Due to the unique manufacturing process of TM, the pores inside intersect with each other, allowing for contacts between individual nanowires (NWs) when filled with metal. Experimental results demonstrated that filling the TM pores with silver allows for heating temperatures up to 60 degrees without deformation or damage to the heating element. The resulting flexible heating element can be utilized in medical devices for heating purposes or as a thermal barrier coating.
  7. Hussein HR, Chang CY, Zheng Y, Yang CY, Li LH, Lee YT, et al.
    Nanotechnology, 2024 Feb 09;35(17).
    PMID: 38262054 DOI: 10.1088/1361-6528/ad21a2
    Heparins are a family of sulfated linear negatively charged polysaccharides that have been widely used for their anticoagulant, antithrombotic, antitumor, anti-inflammatory, and antiviral properties. Additionally, it has been used for acute cerebral infarction relief as well as other pharmacological actions. However, heparin's self-aggregated macrocomplex may reduce blood circulation time and induce life-threatening thrombocytopenia (HIT) complicating the use of heparins. Nonetheless, the conjugation of heparin to immuno-stealth biomolecules may overcome these obstacles. An immunostealth recombinant viral capsid protein (VP28) was expressed and conjugated with heparin to form a novel nanoparticle (VP28-heparin). VP28-heparin was characterized and tested to determine its immunogenicity, anticoagulation properties, effects on total platelet count, and risk of inducing HIT in animal models. The synthesized VP28-heparin trimeric nanoparticle was non-immunogenic, possessed an average hydrodynamic size (8.81 ± 0.58 nm) optimal for the evasion renal filtration and reticuloendothelial system uptake (hence prolonging circulating half-life). Additionally, VP28-heparin did not induce mouse death or reduce blood platelet count when administered at a high dosein vivo(hence reducing HIT risks). The VP28-heparin nanoparticle also exhibited superior anticoagulation properties (2.2× higher prothrombin time) and comparable activated partial thromboplastin time, but longer anticoagulation period when compared to unfractionated heparin. The anticoagulative effects of the VP28-heparin can also be reversed using protamine sulfate. Thus, VP28-heparin may be an effective and safe heparin derivative for therapeutic use.
  8. Makhsin SR, Razak KA, Noordin R, Zakaria ND, Chun TS
    Nanotechnology, 2012 Dec 14;23(49):495719.
    PMID: 23164811 DOI: 10.1088/0957-4484/23/49/495719
    This study describes the properties of colloidal gold nanoparticles (AuNPs) with sizes of 20, 30 and 40 nm, which were synthesized using citrate reduction or seeding-growth methods. Likewise, the conjugation of these AuNPs to mouse anti-human IgG(4) (MαHIgG(4)) was evaluated for an immunochromatographic (ICG) strip test to detect brugian filariasis. The morphology of the AuNPs was studied based on the degree of ellipticity (G) of the transmission electron microscopy images. The AuNPs produced using the seeding-growth method showed lower ellipticity (G ≤ 1.11) as compared with the AuNPs synthesized using the citrate reduction method (G ≤ 1.18). Zetasizer analysis showed that the AuNPs that were synthesized using the seeding-growth method were almost monodispersed with a lower polydispersity index (PDI; PDI≤0.079), as compared with the AuNPs synthesized using the citrate reduction method (PDI≤0.177). UV-visible spectroscopic analysis showed a red-shift of the absorbance spectra after the reaction with MαHIgG(4), which indicated that the AuNPs were successfully conjugated. The optimum concentration of the BmR1 recombinant antigen that was immobilized on the surface of the ICG strip on the test line was 1.0 mg ml(-1). When used with the ICG test strip assay and brugian filariasis serum samples, the conjugated AuNPs-MαHIgG(4) synthesized using the seeding-growth method had faster detection times, as compared with the AuNPs synthesized using the citrate reduction method. The 30 nm AuNPs-MαHIgG(4), with an optical density of 4 from the seeding-growth method, demonstrated the best performance for labelling ICG strips because it displayed the best sensitivity and the highest specificity when tested with serum samples from brugian filariasis patients and controls.
  9. Fang YK, Osama M, Rashmi W, Shahbaz K, Khalid M, Mjalli FS, et al.
    Nanotechnology, 2016 Feb 19;27(7):075702.
    PMID: 26766874 DOI: 10.1088/0957-4484/27/7/075702
    This study introduces a new class of heat transfer fluids by dispersing functionalised graphene oxide nanoparticles (GNPs) in ammonium and phosphonium-based deep eutectic solvents (DESs) without the aid of a surfactant. Different molar ratios of salts and hydrogen bond donors (HBD) were used to synthesise DESs for the preparation of different concentrations of graphene nanofluids (GNFs). The concentrations of GNPs were 0.01 wt%, 0.02 wt% and 0.05 wt %. Homogeneous and stable suspensions of nanofluids were obtained by high speed homogenisation and an ultrasonication process. The stability of the GNFs was determined through visual observation for 4 weeks followed by a centrifugal process (5000-20,000 rpm) for 30 min in addition to zeta potential studies. Dispersion of the GNPs in DES was observed using an optical microscope. The synthesised DES-based GNFs showed no particle agglomeration and formation of sediments in the nanofluids. Thermo-physical properties such as thermal conductivity and specific heat of the nanofluids were also investigated in this research. The highest thermal conductivity enhancement of 177% was observed. The findings of this research provide a new class of engineered fluid for heat transfer applications as a function of temperature, type and composition DESs as well as the GNPs concentration.
  10. Abdul Khaliq R, Kafafy R, Salleh HM, Faris WF
    Nanotechnology, 2012 Nov 16;23(45):455106.
    PMID: 23085573 DOI: 10.1088/0957-4484/23/45/455106
    The effect of the recently developed graphene nanoflakes (GNFs) on the polymerase chain reaction (PCR) has been investigated in this paper. The rationale behind the use of GNFs is their unique physical and thermal properties. Experiments show that GNFs can enhance the thermal conductivity of base fluids and results also revealed that GNFs are a potential enhancer of PCR efficiency; moreover, the PCR enhancements are strongly dependent on GNF concentration. It was found that GNFs yield DNA product equivalent to positive control with up to 65% reduction in the PCR cycles. It was also observed that the PCR yield is dependent on the GNF size, wherein the surface area increases and augments thermal conductivity. Computational fluid dynamics (CFD) simulations were performed to analyze the heat transfer through the PCR tube model in the presence and absence of GNFs. The results suggest that the superior thermal conductivity effect of GNFs may be the main cause of the PCR enhancement.
  11. Zhang J, Chu R, Chen Y, Jiang H, Zeng Y, Zhang Y, et al.
    Nanotechnology, 2018 Dec 20.
    PMID: 30572323 DOI: 10.1088/1361-6528/aafa25
    Carbon-coated nickel cobaltate on nickel foam (C@NCO@NF) with stable pseudocapacitive lithium storage capacity was prepared via a two-step strategy. NiCo hydroxide were initially grown on Ni foam via electrodeposition. Subsequent glucose soaking and annealing converted the intermediate into C@NCO@NF. Carbon coating could significantly improve cycling stability and rate performance of the binder-free anode. The C@NCO@NF electrode could stably deliver a reversible capacity of 513 mAh∙g-1 after 500 cycles at a current density of 500 mA∙g-1. It could even stably cycle at a high current density of 5000 mA∙g-1 for 3000 times, with a reversible capacity of 115 mAh∙g-1. Kinetic analysis revealed that surface-controlled pseudo-capacitance play a dominate role in the lithium ion storage. Improved electrochemical performance is attributed to the synergetic effect of pseudo-capacitance and carbon coating.
  12. Zhang J, Chu R, Chen Y, Jiang H, Zhang Y, Huang NM, et al.
    Nanotechnology, 2018 Jan 19.
    PMID: 29350621 DOI: 10.1088/1361-6528/aaa94c
    Binder-free nickle cobaltite on carbon nanofiber (NiCo2O4@CNF) anode for lithium ion batteries was prepared via a two-step procedure of electrospinning and electrodeposition. The CNF was obtained by annealing the electrospun poly-acrylonitrile (PAN) in the nitrogen (N2). The NiCo2O4 nanostructures were then grown on the CNF by electrodeposition, followed by annealing in the air. Experimental results showed vertically aligned NiCo2O4 nanosheets were uniformly grown on the surface of CNF, forming an interconnected network. The NiCo2O4@CNF possessed considerable lithium storage capacity and cycling stability. It exhibited a high reversible capacity of 778 mAhg-1 after 300 cycles at a current density of 0.25 C (1 C = 890 mAg-1) with an average capacity loss rate of 0.05% per cycle. The NiCo2O4@CNF had considerable rate capacities, delivering a capacity of 350 mAhg-1 at a current density of 2.0 C. The outstanding electrochemical performance could be mainly attributed to these following reasons. (1) The nanoscale structure of NiCo2O4 could not only shorten the diffusion path of lithium ions and electrons but also increase the specific surface area, providing more active sites for electrochemical reactions. (2) The CNF with considerable mechanical strength and electrical conductivity could function as anchor the NiCo2O4 nanostructure and ensure an efficient electron transfer. (3) The porous structure resulted in high specific surface area and effective buffer the volume changes during the repeated charge-discharge processes. Compared with the conventional hydrothermal method, the electrodeposition could significantly simplify the preparation of NiCo2O4, with shorter preparation period and lower energy consumption. This work provided an alternative strategy to obtain high performance anode for the lithium ion batteries.
  13. Alosfur FK, Abo Alhab NJR, Radiman S, Haji Jumali MH
    Nanotechnology, 2018 Jan 31.
    PMID: 29384494 DOI: 10.1088/1361-6528/aaabee
    Mesoporous TiO2 hollow spheres nanostructures with high surface areas were successfully prepared using a microwave method. The prepared hollow spheres have a size range between 200 and 500 nm. The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The particles had an essentially mesoporous structure with a pore size in the range of 2-50 nm. The results confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately 172.3 m2/g. The effect of ultra violet and visible light irradiation and catalyst dosage on the TiO2 photocatalytic activity was studied by measuring the degradation rate of methylene blue. The maximum dye degradation performances with low amount catalyst loading (30 mg) were 99 % and 63.4 % using the same duration of ultra violet and visible light irradiation, respectively (120 min).
  14. Abdulhameed A, Halim MM, Halin IA
    Nanotechnology, 2023 Mar 31;34(24).
    PMID: 36921341 DOI: 10.1088/1361-6528/acc46c
    Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
  15. Ali ME, Hashim U, Mustafa S, Man YB, Yusop MH, Bari MF, et al.
    Nanotechnology, 2011 May 13;22(19):195503.
    PMID: 21430321 DOI: 10.1088/0957-4484/22/19/195503
    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml(-1) swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.
    Matched MeSH terms: Nanotechnology/methods*
  16. Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY
    Nanotechnology, 2020 Nov 27;31(48):485501.
    PMID: 32748805 DOI: 10.1088/1361-6528/abab2e
    Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.
  17. Lay KK, Cheong BM, Tong WL, Tan MK, Hung YM
    Nanotechnology, 2017 Apr 21;28(16):164003.
    PMID: 28244882 DOI: 10.1088/1361-6528/aa6385
    A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.
  18. Kueh TC, Yu H, Soh AK, Wu HA, Hung YM
    Nanotechnology, 2020 Sep 11;31(37):375704.
    PMID: 32480382 DOI: 10.1088/1361-6528/ab9864
    The ultrafast water transport in graphene nanoplatelets (GNPs) coating is attributed to the low friction passages formed by pristine graphene and the hydrophilic functional groups which provide a strong interaction force to the water molecules. Here, we examine the influence of the supporting substrate on the ultrafast water transport property of multilayer graphene coatings experimentally and by computational modelling. Thermally cured GNPs manifesting ultrafast water permeation are coated on different substrate materials, namely aluminium, copper, iron and glass. The physical and chemical structures of the GNPs coatings which are affected by the substrate materials are characterized using various spectroscopy techniques. Experimentally, the water permeation and absorption tests evidence the significant influence of the substrate on the rapid water permeation property of GNPs-coating. The water transport rates of the GNPs coatings correspond to the wettability and the free surface energy of their substrates where the most hydrophilic substrate induces the highest water transport rate. In addition, we conduct molecular dynamics (MD) simulations to investigate the transport rate of water molecules through multilayer GNPs adjacent to different substrate materials. The MD simulations results agree well with the experimental results inferring the strong influence of the substrate materials on the fast water transport of GNPs. Therefore, selection of substrate has to be taken into consideration when the GNPs-coating is placed into applications.
  19. Abdullah MA, Albarody TMB, Hussein AR
    Nanotechnology, 2020 Apr 24;31(28):285709.
    PMID: 32176874 DOI: 10.1088/1361-6528/ab8040
    Precision temperature measurement of a nano system with high sensitivity and fast response is still a challenge. The marvelous thermal and mechanical properties of graphite will allow the creation of superior nanoscale temperature sensors. In-situ x-ray diffraction was employed to determine the graphite hexagonal crystal lattice dimensions and the coefficient of thermal expansion based on the calculation of its interatomic distance. The energy of graphite was mapped over the first Brillouin zone in the temperature range of 50 °C-1200 °C at intervals of 50 °C. Energy-based comparative studies between the quantum free electron approach obtained by an inelastic scattering and an harmonic oscillator are introduced by the principal quantum number associated with the excitation level. The hexagonal lattice constants, interlayer distance and interatomic distance of graphite crystals are investigated analytically with consideration given to their temperature dependence and the carbon peak (002), where the 2θ value decreases slightly with increasing temperature. The coefficient of thermal expansion of graphite-based interatomic distance is negative and tends toward zero with increasing temperature, which is in very good agreement with experiments. Moreover, the energy probability distributions enclosed by reciprocal lattice vectors of the hexagonal lattice are defined and interpreted based on lattice dimensions with varying temperature. Linear changes of the temperature-driven unit cell lattice dimensions and analysis of the kinetic energy of the electron in graphite may both be utilised for the advanced temperature interpretation model and preliminary design of a precise nanothermometer.
  20. Masarudin MJ, Yusoff K, Rahim RA, Hussein MZ
    Nanotechnology, 2009 Jan 28;20(4):045602.
    PMID: 19417322 DOI: 10.1088/0957-4484/20/4/045602
    The delivery of a full plasmid, encoding the green fluorescent protein gene into African monkey kidney (Vero3) cells, was successfully achieved using nanobiocomposites based on layered double hydroxides. This demonstrated the potential of using the system as an alternative DNA delivery vector. Intercalation of the circular plasmid DNA, pEGFP-N2, into Mg/Al-NO(3)(-) layered double hydroxides (LDH) was accomplished through anion exchange routes to form the nanobiocomposite material. The host was previously synthesized at the Mg(2+) to Al(3+) molar ratio R(i) = 2 and subsequently intercalated with plasmid DNA. Size expansion of the interlamellae host from 8.8 A in LDH to 42 A was observed in the resulting nanobiocomposite, indicating stable hybridization of the plasmid DNA. The powder x-ray diffraction (PXRD) results, supplemented with Fourier-transform infrared (FTIR) spectroscopy, compositional and electrophoresis studies confirmed the encapsulation episode of the biomaterial. In order to elucidate the use of this resulting nanobiocomposite as a delivery vector, an MTT assay was performed to determine any cytotoxic effects of the host towards cells. The intercalated pEGFP-N2 anion was later successfully recovered through acidification with HNO(3) after treatment with DNA-degrading enzymes, thus also showing the ability of the LDH host to protect the intercalated biomaterial from degradation. Cell transfection studies on Vero3 cells were then performed, where cells transfected with the nanobiocomposite exhibited fluorescence as early as 12 h post-treatment compared to naked delivery of the plasmid itself.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links