Displaying all 3 publications

Abstract:
Sort:
  1. Naomi R, Embong H, Othman F, Ghazi HF, Maruthey N, Bahari H
    Nutrients, 2021 Dec 22;14(1).
    PMID: 35010895 DOI: 10.3390/nu14010020
    Alzheimer's disease (AD) is the most common form of neurodegenerative disorders affecting mostly the elderly. It is characterized by the presence of Aβ and neurofibrillary tangles (NFT), resulting in cognitive and memory impairment. Research shows that alteration in gut microbial diversity and defects in gut brain axis are linked to AD. Probiotics are known to be one of the best preventative measures against cognitive decline in AD. Numerous in vivo trials and recent clinical trials have proven the effectiveness of selected bacterial strains in slowing down the progression of AD. It is proven that probiotics modulate the inflammatory process, counteract with oxidative stress, and modify gut microbiota. Thus, this review summarizes the current evidence, diversity of bacterial strains, defects of gut brain axis in AD, harmful bacterial for AD, and the mechanism of action of probiotics in preventing AD. A literature search on selected databases such as PubMed, Semantic Scholar, Nature, and Springer link have identified potentially relevant articles to this topic. However, upon consideration of inclusion criteria and the limitation of publication year, only 22 articles have been selected to be further reviewed. The search query includes few sets of keywords as follows. (1) Probiotics OR gut microbiome OR microbes AND (2) Alzheimer OR cognitive OR aging OR dementia AND (3) clinical trial OR in vivo OR animal study. The results evidenced in this study help to clearly illustrate the relationship between probiotic supplementation and AD. Thus, this systematic review will help identify novel therapeutic strategies in the future as probiotics are free from triggering any adverse effects in human body.
    Matched MeSH terms: Alzheimer Disease/diet therapy*
  2. Syarifah-Noratiqah SB, Zulfarina MS, Ahmad SU, Fairus S, Naina-Mohamed I
    Int J Med Sci, 2019;16(5):711-719.
    PMID: 31217739 DOI: 10.7150/ijms.29934
    The oil palm tree (Elaeis guineensis) from the family Arecaceae is a high oil-producing agricultural crop. A significant amount of vegetation liquor is discarded during the palm oil milling process amounting to 90 million tons per year around the world. This water-soluble extract is rich in phenolic compounds known as Oil Palm Phenolics (OPP). Several phenolic acids including the three isomers of caffeoylshikimic acid (CFA), p-hydroxybenzoic acid (PHBA), protocatechuic acid (PCA) and hydroxytyrosol are among the primary active ingredients in the OPP. Previous investigations have reported several positive pharmacological potentials by OPP such as neuroprotective and atheroprotective effects, anti-tumor and reduction in Aβ deposition in Alzheimer's disease model. In the current review, the pharmacological potential for CFA, PHBA, PCA and hydroxytyrosol is carefully reviewed and evaluated.
    Matched MeSH terms: Alzheimer Disease/diet therapy
  3. Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I
    Int J Mol Sci, 2019 Oct 14;20(20).
    PMID: 31615073 DOI: 10.3390/ijms20205090
    Ageing is an inevitable fundamental process for people and is their greatest risk factor for neurodegenerative disease. The ageing processes bring changes in cells that can drive the organisms to experience loss of nutrient sensing, disrupted cellular functions, increased oxidative stress, loss of cellular homeostasis, genomic instability, accumulation of misfolded protein, impaired cellular defenses and telomere shortening. Perturbation of these vital cellular processes in neuronal cells can lead to life threatening neurological disorders like Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Lewy body dementia, etc. Alzheimer's Disease is the most frequent cause of deaths in the elderly population. Various therapeutic molecules have been designed to overcome the social, economic and health care burden caused by Alzheimer's Disease. Almost all the chemical compounds in clinical practice have been found to treat symptoms only limiting them to palliative care. The reason behind such imperfect drugs may result from the inefficiencies of the current drugs to target the cause of the disease. Here, we review the potential role of antioxidant polyphenolic compounds that could possibly be the most effective preventative strategy against Alzheimer's Disease.
    Matched MeSH terms: Alzheimer Disease/diet therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links