Displaying all 2 publications

Abstract:
Sort:
  1. Saleem H, Zengin G, Ahmad I, Htar TT, Naidu R, Mahomoodally MF, et al.
    Food Res Int, 2020 11;137:109651.
    PMID: 33233230 DOI: 10.1016/j.foodres.2020.109651
    Anagallis arvensis (L.) is a wild edible food plant that has been used in folklore as a natural remedy for treating common ailments. This study aimed to explore the biochemical properties and toxicity of methanol (MeOH) and dichloromethane (DCM) extracts of A. arvensis (aerial and root parts). Bioactive contents were assessed spectrophotometrically, and the secondary metabolites were identified by UHPLC-MS analysis. DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelating assays were employed to assess antioxidant activity. Inhibitory potential against key enzymes (α-glucosidase, urease, lipoxygenase (LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE)) were also assessed. MTT assay was employed to test toxicity against SW-480, MDA-MB-231, CaSki, MCF-7, and DU-145 cancer cell lines. Methanolic extracts showed highest phenolic (aerial-MeOH: 27.5 mg GAE/g extract; root-MeOH: 21.17 mg GAE/g extract) and flavonoid (aerial-MeOH: 26.15 mg QE/g extract; root-MeOH: 19.07 mg QE/g extract) contents, and potent antioxidant activities. The aerial-MeOH extract was most potent for DPPH (IC50: 231 ug/mL), ABTS (131.12 mg TE/g extract), FRAP (82.97 mg TE/g extract), and CUPRAC (137.15 mg TE/g extract) antioxidant assays. All extracts were cytotoxic towards tested cancer cells with IC50 values ranging from 12.57 to 294.5 µg/mL and conferred a comparatively strong inhibition against α-glucosidase (aerial-DCM extract showed the highest inhibition against α-glucosidase with IC50 value of 20.97 µg /mL), while aerial extracts were also considerably active against BChE (aerial-MeOH IC50: 224.63 µg /mL), LOX (aerial-DCM IC50: 385.7 µg /mL). Likewise, aerial-MeOH extract was most active against urease enzyme (IC50: 129.72 µg /mL). UHPLC-MS investigation of methanolic extracts showed the existence of important phenolics, flavonoids, and saponins, including methyl gallte, quercetin, lanceoletin, and balanitesin, amongst others. Moreover, principal component analysis (PCA) highlighted the correlation amongst bioactive contents and observed biological activities. A. arvensis extracts could be regarded as a natural source of bioactive antioxidants, enzyme inhibitors and anticancer agents and can be further investigated as a lead source for food and pharmaceutical products. However, further studies to isolate, purify, and to characterize its bioactive phytochemicals are needed.
    Matched MeSH terms: Anagallis*
  2. Saleem H, Zengin G, Locatelli M, Abidin SAZ, Ahemad N
    Nat Prod Res, 2021 Feb 08.
    PMID: 33550873 DOI: 10.1080/14786419.2021.1880404
    Anagallis arvensis L. commonly known as 'Scarlet Pimpernel' has been used in folklore as natural remedy for treating common ailments. The present research is aimed to explore the phytochemical composition and enzyme inhibition potential of methanol and dichloromethane (DCM) extracts of A. arvensis aerial and root parts. The phytochemical composition was established via HPLC-PDA polyphenolic quantification and UHPLC-MS analysis, while the inhibition potential against amylase and tyrosinase enzymes were assessed using standard in vitro protocols. The HPLC-PDA polyphenolic quantification revealed the presence of important compounds including catechin, gallic acid, chlorogenic acid, and ferulic acid, whereas 34 different secondary metabolites were tentatively identified by UHPLC-MS of both the DCM extracts. All the extracts showed moderate tyrosinase and a weak amylase inhibition activity. The aerial-DCM extract showed comparatively higher tyrosinase and amylase enzyme inhibition potential, which may be due to the presence of secondary metabolites as tentatively identified by its UHPLC-MS profiling.
    Matched MeSH terms: Anagallis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links