METHOD: Blood samples were obtained from 20 healthy blood donors, 30 RA patients who presented with anaemia and 30 patients who had pure iron deficiency anaemia (IDA). The samples were analysed for full blood count, iron, ferritin, transferrin, soluble transferrin receptor and prohepcidin.
RESULTS: The mean prohepcidin level in the control subjects was 256 microg/L. The prohepcidin level was significantly lower in IDA patients (100 microg/L; p < 0.0001) but not significantly different from that of control in RA patients (250 microg/L; p > 0.05). Higher serum soluble transferrin receptor (sTfR) levels were observed in IDA (p < 0.0001) but not in RA compared with that of control (p > 0.05). RA patients were divided into iron depleted and iron repleted subgroups based on the ferritin level. Prohepcidin in the iron depleted group was significantly lower than the iron repleted group and the control (p < 0.0001) and higher levels were observed in the iron repleted group (p < 0.01). sTfR levels in the iron depleted group were significantly higher than the control and the iron repleted patients (p < 0.001). In the iron repleted group, sTfR level was not statistically different from that of control (p > 0.05).
CONCLUSION: Serum prohepcidin is clearly reduced in uncomplicated iron deficiency anaemia. The reduced prohepcidin levels in the iron depleted RA patients suggests that there may be conflicting signals regulating hepcidin production in RA patients. In RA patients who have reduced hepcidin in the iron depleted group (ferritin <60 microg/L) where sTfR levels are increased suggests that these patients are iron deficient. Further studies with a larger cohort of patients are required to substantiate this point.
METHODS: Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification.
RESULTS: The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis.
CONCLUSION: To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles' sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.