Displaying all 5 publications

Abstract:
Sort:
  1. Wang Z, Zhang F, Liang Y, Zheng K, Gu C, Zhang W, et al.
    Microbiol Spectr, 2021 10 31;9(2):e0046321.
    PMID: 34643440 DOI: 10.1128/Spectrum.00463-21
    Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCE Alteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
    Matched MeSH terms: Bacteriophages/isolation & purification*
  2. Tan CS, Aqiludeen NA, Tan R, Gowbei A, Mijen AB, Santhana Raj L, et al.
    Med J Malaysia, 2020 03;75(2):110-116.
    PMID: 32281590
    INTRODUCTIONS: The emergence of multidrug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) complicates the treatment of the simplest infection. Although glycopeptides such as vancomycin still proves to be effective in treating MRSA infections, the emergence of vancomycin-resistant strains limits the long term use of this antibiotic. Bacteriophages are ubiquitous bacterial viruses which is capable of infecting and killing bacteria including its antibiotic-resistant strains. Bactericidal bacteriophages use mechanisms that is distinct from antibiotics and is not affected by the antibioticresistant phenotypes.

    OBJECTIVES: The study was undertaken to evaluate the possibility to isolate bacteriolytic bacteriophages against S.aureus from raw sewage water and examine their efficacy as antimicrobial agents in vitro.

    METHODS: Bacteriophages were isolated from the raw sewage using the agar overlay method. Isolated bacteriophages were plaque purified to obtain homogenous bacteriophage isolates. The host range of the bacteriophages was determined using the spot test assay against the 25 MRSA and 36 MSSA isolates obtained from the Sarawak General Hospital. Staphylococcus saprophyticus, Staphylococcus sciuri and Staphylococcus xylosus were included as non-SA controls. The identity of the bacteriophages was identified via Transmission Electron Microscopy and genomic size analysis. Their stability at different pH and temperature were elucidated.

    RESULTS: A total of 10 lytic bacteriophages infecting S.aureus were isolated and two of them namely ΦNUSA-1 and ΦNUSA-10 from the family of Myoviridae and Siphoviridae respectively exhibited exceptionally broad host range against >80% of MRSA and MSSA tested. Both bacteriophages were specific to S.aureus and stable at both physiologic pH and temperature.

    CONCLUSION: This study demonstrated the abundance of S.aureus specific bacteriophages in raw sewage. Their high virulence against both MSSA and MRSA is an excellent antimicrobial characteristic which can be exploited for bacteriophage therapy against MRSA.

    Matched MeSH terms: Bacteriophages/isolation & purification*
  3. Chin CF, Ler LW, Choong YS, Ong EB, Ismail A, Tye GJ, et al.
    J Microbiol Methods, 2016 Jan;120:6-14.
    PMID: 26581498 DOI: 10.1016/j.mimet.2015.11.007
    Antibody phage display panning involves the enrichment of antibodies against specific targets by affinity. In recent years, several new methods for panning have been introduced to accommodate the growing application of antibody phage display. The present work is concerned with the application of streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips (D.A.R.T's®) for antibody phage display. The system was initially designed to isolate antigens by affinity selection for mass spectrometry analysis. The streptavidin MSIA™ D.A.R.T's® system allows for easy attachment of biotinylated target antigens on the solid surface for presentation to the phage library. As proof-of-concept, a domain antibody library was passed through the tips attached with the Hemolysin E antigen. After binding and washing, the bound phages were eluted via standard acid dissociation and the phages were rescued for subsequent panning rounds. Polyclonal enrichment was observed for three rounds of panning with five monoclonal domain antibodies identified. The proposed method allows for a convenient, rapid and semi-automated alternative to conventional antibody panning strategies.
    Matched MeSH terms: Bacteriophages/isolation & purification
  4. Al-Fendi A, Shueb RH, Ravichandran M, Yean CY
    J Basic Microbiol, 2014 Oct;54(10):1036-43.
    PMID: 24532381 DOI: 10.1002/jobm.201300458
    Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting Vibrio cholerae. Ten strains of V. cholerae that appeared to be free of inducible prophages were used as the host strains. Eleven bacteriophage isolates were obtained by plaque assay, three of which were lytic and further characterized. The morphologies of the three lytic phages were similar with each having an icosahedral head (ca. 50-60 nm in diameter), a neck, and a sheathed tail (ca. 90-100 nm in length) characteristic of the family Myoviridae. The genomes of the lytic phages were indistinguishable in length (ca. 33.5 kb), nuclease sensitivity (digestible with DNase I, but not RNase A or S1 nuclease), and restriction enzyme sensitivity (identical banding patterns with HindIII, no digestion with seven other enzymes). Testing for infection against 46 strains of V. cholerae and 16 other species of enteric bacteria revealed that all three isolates had a narrow host range and were only capable of infecting V. cholerae O1 El Tor Inaba. The similar morphologies, indistinguishable genome characteristics, and identical host ranges of these lytic isolates suggests that they represent one phage, or several very closely related phages, present in different water sources. These isolates are good candidates for further bio-phage-control studies.
    Matched MeSH terms: Bacteriophages/isolation & purification*
  5. Lau GL, Sieo CC, Tan WS, Hair-Bejo M, Jalila A, Ho YW
    Poult Sci, 2010 Dec;89(12):2589-96.
    PMID: 21076096 DOI: 10.3382/ps.2010-00904
    The efficacy of bacteriophage EC1, a lytic bacteriophage, against Escherichia coli O78:K80, which causes colibacillosis in poultry, was determined in the present study. A total of 480 one-day-old birds were randomly assigned to 4 treatments groups, each with 4 pens of 30 birds. Birds from the control groups (groups I and II) received PBS (pH 7.4) or 10(10) pfu of bacteriophage EC1, respectively. Group III consisted of birds challenged with 10(8) cfu of E. coli O78:K80 and treated with 10(10) pfu of bacteriophage EC1 at 2 h postinfection, whereas birds from group IV were challenged with 10(8) cfu of E. coli O78:K80 only. All the materials were introduced into the birds by intratracheal inoculation. Based on the results of the present study, the infection was found to be less severe in the treated E. coli-challenged group. Mean total viable cell counts of E. coli identified on eosin methylene blue agar (designated EMB + E. coli) in the lungs were significantly lower in treated, E. coli-challenged birds than in untreated, E. coli-challenged birds on d 1 and 2 postinfection. The EMB + E. coli isolation frequency was also lower in treated birds; no E. coli was detectable in blood samples on any sampling day, and E. coli were isolated only in the liver, heart, and spleen of treated chickens at a ratio of 2/6, 1/6, and 3/6, respectively, at d 1 postinfection. The BW of birds from the E. coli-challenged group treated with bacteriophage EC1 were not significantly different from those of birds from both control groups but were 15.4% higher than those of the untreated, E. coli-challenged group on d 21 postinfection. The total mortality rate of birds during the 3-wk experimental period decreased from 83.3% in the untreated, E. coli-challenged birds (group IV) to 13.3% in birds treated with bacteriophage EC1 (group III). These results suggest that bacteriophage EC1 is effective in vivo and could be used to treat colibacillosis in chickens.
    Matched MeSH terms: Bacteriophages/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links