Hypertension is asymptomatic and a well-known "silent killer", which can cause various concomitant diseases in human population after years of adherence. Although there are varieties of synthetic antihypertensive drugs available in current market, their relatively low efficacies and major application in only single drug therapy, as well as the undesired chronic adverse effects associated, has drawn the attention of worldwide scientists. According to the trend of antihypertensive drug evolution, the antihypertensive drugs used as primary treatment often change from time-to-time with the purpose of achieving the targeted blood pressure range. One of the major concerns that need to be accounted for here is that the signaling mechanism pathways involved in the vasculature during the vascular tone regulation should be clearly understood during the pharmacological research of antihypertensive drugs, either in vitro or in vivo. There are plenty of articles that discussed the signaling mechanism pathways mediated in vascular tone in isolated fragments instead of a whole comprehensive image. Therefore, the present review aims to summarize previous published vasculature-related studies and provide an overall depiction of each pathway including endothelium-derived relaxing factors, G-protein-coupled, enzyme-linked, and channel-linked receptors that occurred in the microenvironment of vasculature with a full schematic diagram on the ways their signals interact. Furthermore, the crucial vasodilative receptors that should be included in the mechanisms of actions study on vasodilatory effects of test compounds were suggested in the present review as well.
1. Obesity is a metabolic disease of pandemic proportions largely arising from positive energy balance, a consequence of sedentary lifestyle, conditioned by environmental and genetic factors. Several central and peripheral neurohumoral factors (the major ones being the anorectic adipokines leptin and adiponecin and the orexigenic gut hormone ghrelin) acting on the anorectic (pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript) and orexigenic (neuropeptide Y and agouti gene-related protein) neurons regulate energy balance. These neurons, mainly in the arcuate nucleus of the hypothalamus, project to parts of the brain modulating functions such as wakefulness, autonomic function and learning. A tilt in the anorectic-orexigenic balance, perhaps determined genetically, leads to obesity. 2. Excess fat deposition requires space, created by adipocyte (hypertrophy and hyperplasia) and extracellular matrix (ECM) remodelling. This process is regulated by several factors, including several adipocyte-derived Matrix metalloproteinases and the adipokine cathepsin, which degrades fibronectin, a key ECM protein. Excess fat, also deposited in visceral organs, generates chronic low-grade inflammation that eventually triggers insulin resistance and the associated comorbidities of metabolic syndrome (hypertension, atherosclerosis, dyslipidaemia and diabetes mellitus). 3. The perivascular adipose tissue (PVAT) has conventionally been considered non-physiological structural tissue, but has recently been shown to serve a paracrine function, including the release of adipose-derived relaxant and contractile factors, akin to the role of the vascular endothelium. Thus, PVAT regulates vascular function in vivo and in vitro, contributing to the cardiovascular pathophysiology of the metabolic syndrome. Defining the mechanism of PVAT regulation of vascular reactivity requires more and better controlled investigations than currently seen in the literature.
The tocotrienol vitamin E has potent antioxidant property, however absorption is low due to high lipid solubility. A self emulsifying preparation of tocotrienol rich vitamin E (SF-TRE) had been reported to increase their bioavailability. This randomized, placebo controlled, blinded end point clinical study aimed to determine the effects of 50, 100 and 200 mg daily of SF-TRE and placebo for two months on arterial compliance and vitamin E blood levels. Assessment of arterial compliance by carotid femoral pulse wave velocity (PWV) and augmentation index (AI), plasma vitamin E, serum total cholesterol and low density lipoprotein cholesterol were taken before and after 2 months' treatment in 36 healthy males. Un-supplemented tocotrienol levels were low, after treatment, all SF-TRE treated groups had significantly higher plasma alpha, delta and delta tocotrienol concentrations compared to placebo. Augmentation index change from baseline to end of treatment for groups placebo, 50, 100, and 200 mg were 2.22+/-1.54, -6.59+/-2.84, -8.72+/-3.77, and -6.27+/-2.67% respectively (p=0.049, 0.049, and 0.047 respectively). Groups 100 and 200 mg showed significant improvement after treatment with pulse wave velocity reductions of 0.77 m/s and 0.65 m/s respectively (p=0.007 and p=0.002). There was no effect of SF-TRE on serum lipids. We conclude that there was a trend towards improvement in arterial compliance with 2 months' of SF-TRE.