Skin cancer or cutaneous carcinoma, is a pre-eminent global public health problem with no signs of plateauing in its incidence. As the most common treatments for skin cancer, surgical resection inevitably damages a patient's appearance, and chemotherapy has many side effects. Thus, the main aim of this study was to screen for a cell penetrating peptide (CPP) for the development of a targeting vector for skin cancer. In this study, we identified a CPP with the sequence NRPDSAQFWLHH from a phage displayed peptide library. This CPP targeted the human squamous carcinoma A431 cells through an interaction with the epidermal growth factor receptor (EGFr). Methyl-β-cyclodextrin (MβCD) and chlorpromazine hydrochloride (CPZ) inhibited the internalisation of the CPP into the A431 cells, suggesting the peptide entered the cells via clathrin-dependent endocytosis. The CPP displayed on hepatitis B virus-like nanoparticles (VLNPs) via the nanoglue successfully delivered the nanoparticles into A431 cells. The present study demonstrated that the novel CPP can serve as a ligand to target and deliver VLNPs into skin cancer cells.
Human serum albumin (HSA) is a superior carrier for delivering extracellular drugs. However, the development of a cell-penetrating HSA remains a great challenge due to its low membrane permeability. We report herein on the design of a series of palmitoyl-poly-arginine peptides (CPPs) and an evaluation of their cell-penetrating effects after forming a complex with HSA for use in intracellular drug delivery. The palmitoyl CPPs forms a stable complex with HSA by anchoring itself to the high affinity palmitate binding sites of HSA. Among the CPPs evaluated, a cyclic polypeptide composed of D-dodecaarginines, palmitoyl-cyclic-(D-Arg)12 was the most effective for facilitating the cellular uptake of HSA by HeLa cells. Such a superior cell-penetrating capability is primarily mediated by macropinocytosis. The effect of the CPP on pharmacological activity was examined using three drugs loaded in HSA via three different methods: a) an HSA-paclitaxel complex, b) an HSA-doxorubicin covalent conjugate and c) an HSA-thioredoxin fusion protein. The results showed that cell-penetrating efficiency was increased with a corresponding and significant enhancement in pharmacological activity. In conclusion, palmitoyl-cyclic-(D-Arg)12/HSA is a versatile cell-penetrating drug delivery system with great potential for use as a nano-carrier for a wide diversity of pharmaceutical applications.