Displaying all 8 publications

Abstract:
Sort:
  1. Al-Bogami MM, Alkhorayef M, Sulieman A, Bradley D, Jawad AS, Mageed RA
    Appl Radiat Isot, 2024 Sep;211:111373.
    PMID: 38851075 DOI: 10.1016/j.apradiso.2024.111373
    In addition to generalised of bone loss and a higher fracture risk, rheumatoid arthritis (RA) causes periarticular bone erosions. Improvements in bone density/erosion and turnover may not go hand in hand with a positive clinical response to biological anti-inflammatory drugs assesed by disease activity score 28 (DAS28) in RA patients. This study aimed to understand how biologic anti-inflammatory drugs affect bone density, erosion, and turnover in RA patients. We examined bone mineral density (BMD) and bone turnover biomarkers. The study population consisted of 62 RA patients, 49 (79%) of whom were female and 13 (21%) of whom were male. The patients ranged in age from 40 to 79 years old. The patients' BMD was measured using a DEXA scan, and their plasma levels of bone turnover biomarkers CTX and osteocalcin were quantified utilizing an ELISA. BMD of the hip and lumbar spine in responder patients rose after therapy by 0.001g/cm2 (0.11 percent, p0.001 vs. before treatment) and 0.0396g/cm2 (3.96 percent, p0.001 vs. before treatment), respectively. Clinically non-responder patients' DAS28 revealed minor reductions in hip BMD values of -0.008g/cm2 (-0.78 percent, p0.001 vs. before therapy), as well as an improvement in lumbar spine BMD of 0.03g/cm2 (3.03 percent, p0.001 vs. before treatment). After 12 weeks of therapy, the CTX levels in responder patients dropped from 164 125 pg/ml to 131 129 pg/ml. Osteocalcin levels in non-responder patients increased substantially from 11.6 ng/ml to 14.9 ng/ml after 12 weeks of therapy compared to baseline (p = 0.01). Treatment with biologic anti-inflammatory medicines decreases widespread bone loss in RA patients' hip and lumbar spine. The beneficial effects of therapy on BMD were not associated with changes in disease activity of RA patients. Changes in plasma levels of bone turnover biomarkers such as sCTX and osteocalcin confirmed the treatment's beneficial effects.
    Matched MeSH terms: Collagen Type I/blood
  2. Chin KY, Ima-Nirwana S
    Clin Interv Aging, 2014;9:1247-59.
    PMID: 25120355 DOI: 10.2147/CIA.S67016
    BACKGROUND: Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.
    METHODS: Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.
    RESULTS: There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).
    CONCLUSION: AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
    KEYWORDS: bone remodeling; osteoporosis; testosterone; tocotrienol
    Matched MeSH terms: Collagen Type I/blood
  3. Shuid AN, Abu Bakar MF, Abdul Shukor TA, Muhammad N, Mohamed N, Soelaiman IN
    Aging Male, 2011 Sep;14(3):150-4.
    PMID: 20874437 DOI: 10.3109/13685538.2010.511327
    Osteoporosis in elderly men is becoming an important health issue with the aging society. Elderly men with androgen deficiency are exposed to osteoporosis and can be treated with testosterone replacement. In this study, Eurycoma longifolia (EL), a plant with androgenic effects, was supplemented to an androgen-deficient osteoporotic aged rat as alternative to testosterone. Aged 12 months old Sprague-Dawley rats were divided into groups of normal control (NC), sham-operated (SO), orchidectomised-control (OrxC), orchidectomised and supplemented with EL (Orx + El) and orchidectomised and given testosterone (Orx + T). After 6 weeks of treatment, serum osteocalcin, serum terminal C-telopeptide Type 1 collagen (CTX) and the fourth lumbar bone calcium were measured. There were no significant differences in the osteocalcin levels before and after treatment in all the groups. The CTX levels were also similar for all the groups before treatment. However, after treatment, orchidectomy had caused significant elevation of CTX compared to normal control rats. Testosterone replacements in orchidectomised rats were able to prevent the rise of CTX. Orchidectomy had also reduced the bone calcium level compared to normal control rats. Both testosterone replacement and EL supplementation to orchidectomised rats were able to maintain the bone calcium level, with the former showing better effects. As a conclusion, EL prevented bone calcium loss in orchidectomised rats and therefore has the potential to be used as an alternative treatment for androgen deficient osteoporosis.
    Matched MeSH terms: Collagen Type I/blood
  4. Tan KM, Saw S, Sethi SK
    J Clin Lab Anal, 2013 Jul;27(4):301-4.
    PMID: 23852789 DOI: 10.1002/jcla.21602
    BACKGROUND: In this study, we aimed to determine the normal ranges of 25-hydroxy-vitamin D(3) (25-OHD(3)), parathyroid hormone (PTH), and the markers of bone turnover, procollagen type 1 N propeptide (P1NP) and C-terminal cross-linked telopeptide of type 1 collagen (CTX), in normal healthy women in Singapore, and to explore the relationship between vitamin D, PTH, and these markers of bone turnover in the women.

    METHODS: One hundred and ninety-seven healthy women, aged 25 to 60, were selected from a hospital staff health screening program; 68% were Chinese, 18% Malay, and 14% Indian. P1NP, CTX, and 25-OHD(3) were measured using the Roche Cobas® electrochemiluminescence immunoassay. Serum PTH was measured using the Siemens ADVIA Centaur® immunoassay.

    RESULTS: Sixty-five percent had 25-OHD(3) concentrations <50 nmol/l. Vitamin D insufficiency (25-OHD(3) < 50 nmol/l) was more prevalent in Malays (89%) and Indians (82%) compared to Chinese (56%). There was no correlation between vitamin D and age. PTH positively correlated with age, and Malays and Indians had higher PTH concentrations than Chinese. There was an inverse correlation between PTH and 25-OHD(3), but no threshold of 25-OHD(3) concentrations at which PTH plateaued. The bone turnover markers P1NP and CTX inversely correlated with age but were not different between ethnic groups. CTX and P1NP exhibited good correlation, however, there was no significant correlation between 25-OHD(3) or PTH concentrations and the bone turnover markers P1NP and CTX.

    CONCLUSIONS: Healthy women in Singapore have a high prevalence of vitamin D insufficiency. Vitamin D insufficiency was more prevalent in Malays and Indians compared to Chinese.

    Matched MeSH terms: Collagen Type I/blood
  5. Kruger MC, Chan YM, Lau LT, Lau CC, Chin YS, Kuhn-Sherlock B, et al.
    Eur J Nutr, 2018 Dec;57(8):2785-2794.
    PMID: 28975432 DOI: 10.1007/s00394-017-1544-6
    PURPOSE: In Malaysia, hip fracture incidence is higher in Chinese women than other ethnic groups. This study compared the effects of a high-calcium vitamin D fortified milk with added FOS-inulin versus regular milk over 1 year on aspects of bone health in Chinese postmenopausal women in Malaysia.

    METHODS: One-hundred and twenty-one women (mean age 59 (± 4) years) were randomized into two groups: control (n = 60; regular milk, 428 mg calcium per day) or intervention (n = 61; fortified milk at 1200 mg calcium, 96 mg magnesium, 2.4 mg zinc, 15 μg vitamin D and 4 g FOS-inulin per day). At baseline, weeks 12, 24, 36 and 52, parathyroid hormone (PTH), C-Telopeptide of Type I Collagen (CTx-1), Procollagen I Intact N-Terminal propeptide (PINP) and vitamin D levels were assessed. Bone density (BMD) was measured at baseline and week 52 using a GE Lunar iDXA.

    RESULTS: Body mass index, lumbar spine and femoral neck BMD did not differ between groups at baseline. Over 52 weeks, mean plasma 25 (OH) D3 levels increased to 74.8 nmol/L (intervention group) or remained at 63.1 nmol/L (control group) (p 

    Matched MeSH terms: Collagen Type I/blood
  6. Lai PS, Chua SS, Chew YY, Chan SP
    J Clin Pharm Ther, 2011 Oct;36(5):557-67.
    PMID: 21916908 DOI: 10.1111/j.1365-2710.2010.01210.x
    Studies have shown that comprehensive interventions by pharmacists can improve adherence and persistence to osteoporosis therapy, but the association between adherence and bone turnover markers (BTMs) has never been studied. Therefore, the aim of this study was to evaluate the effects of pharmaceutical care on medication adherence (and its effects on BTMs), as well as persistence of postmenopausal osteoporotic women to prescribed bisphosphonates.
    Matched MeSH terms: Collagen Type I/blood
  7. Kruger MC, Chan YM, Kuhn-Sherlock B, Lau LT, Lau C, Chin YS, et al.
    Eur J Nutr, 2016 Aug;55(5):1911-21.
    PMID: 26264387 DOI: 10.1007/s00394-015-1007-x
    PURPOSE: To compare the effects of a high-calcium vitamin D-fortified milk with added FOS-inulin versus regular milk on serum parathyroid hormone, and bone turnover markers in premenopausal (Pre-M) and postmenopausal (PM) women over 12 weeks.

    METHODS: Premenopausal women (n = 136, mean age 41 (±5) years) and postmenopausal women [n = 121, mean age 59 (±4) years] were recruited, and each age group randomised into two groups to take two glasses per day of control = regular milk (500 mg calcium per day) or intervention (Int) = fortified milk (1000 mg calcium for pre-M women and 1200 mg calcium for PM women, 96 mg magnesium, 2.4 mg zinc, 15 µg vitamin D, 4 g FOS-inulin per day). At baseline, week 4 and week 12 serum minerals and bone biochemical markers were measured and bone density was measured at baseline.

    RESULTS: Mean 25-hydroxyvitamin D [25(OH) vitamin D3] levels among groups were between 49 and 65 nmol/L at baseline, and over the 12 weeks of supplementation, the fortified milk improved vitamin D status in both Int groups. CTx-1 and PINP reduced significantly in both Pre-M and PM groups over the 12 weeks, with the changes in CTx-1 being significantly different (P 

    Matched MeSH terms: Collagen Type I/blood
  8. Lim SY, Zalilah MS, Chin YS, Ramachandran V, Chan YM
    Nutrients, 2018 Jul 17;10(7).
    PMID: 30018240 DOI: 10.3390/nu10070915
    The interaction of dietary and genetic factors may affect the development of bone deterioration. This study investigated whether the effects of dietary acid load (DAL) on bone loss in postmenopausal Chinese women were moderated by the insulin-like growth factor-1 (IGF-1) single nucleotide polymorphism, a known gene that plays a role in the regulation of bone formation and bone remodeling. A total of 217 healthy participants were recruited from the National Council of Senior Citizens Organizations Malaysia. Serum collagen type 1 cross-linked C-telopeptide was used as a surrogate bone marker to assess bone resorption and Agena® MassARRAY genotyping analysis was used to identify the signaling of IGF-1 rs35767. The dietary acid load was measured by potential renal acid load score while physical activity was ascertained using the Global Physical Activity Questionnaire. Hierarchical regression was applied to test the main and interaction effects of DAL and IGF-1 genotypes in bone resorption. The result supported the diet-dependent acid-base balance theory that higher DAL was positively associated with bone resorption (β = 0.152, p = 0.031, F(6,207) = 2.11, sig-F = 0.036, R² = 0.079). However, the results indicated that there was no significant correlation between IGF-1 and bone resorption, or any significant interaction between DAL and IGF-1. In conclusion, there was no moderating effect of IGF-1 on the relationship between DAL and bone resorption.
    Matched MeSH terms: Collagen Type I/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links