Displaying all 4 publications

Abstract:
Sort:
  1. Veno J, Rahman RNZRA, Masomian M, Ali MSM, Kamarudin NHA
    Molecules, 2019 Aug 30;24(17).
    PMID: 31480403 DOI: 10.3390/molecules24173169
    Thermostability remains one of the most desirable traits in many lipases. Numerous studies have revealed promising strategies to improve thermostability and random mutagenesis often leads to unexpected yet interesting findings in engineering stability. Previously, the thermostability of C-terminal truncated cold-adapted lipase from Staphylococcus epidermidis AT2 (rT-M386) was markedly enhanced by directed evolution. The newly evolved mutant, G210C, demonstrated an optimal temperature shift from 25 to 45 °C and stability up to 50 °C. Interestingly, a cysteine residue was randomly introduced on the loop connecting the two lids and accounted for the only cysteine found in the lipase. We further investigated the structural and mechanistic insights that could possibly cause the significant temperature shift. Both rT-M386 and G210C were modeled and simulated at 25 °C and 50 °C. The results clearly portrayed the effect of cysteine substitution primarily on the lid stability. Comparative molecular dynamics simulation analysis revealed that G210C exhibited greater stability than the wild-type at high temperature simulation. The compactness of the G210C lipase structure increased at 50 °C and resulted in enhanced rigidity hence stability. This observation is supported by the improved and stronger non-covalent interactions formed in the protein structure. Our findings suggest that the introduction of a single cysteine residue at the lid region of cold-adapted lipase may result in unexpected increased in thermostability, thus this approach could serve as one of the thermostabilization strategies in engineering lipase stability.
    Matched MeSH terms: Cysteine/genetics*
  2. Campion KL, McCormick WD, Warwicker J, Khayat ME, Atkinson-Dell R, Steward MC, et al.
    J Am Soc Nephrol, 2015 Sep;26(9):2163-71.
    PMID: 25556167 DOI: 10.1681/ASN.2014070653
    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo.
    Matched MeSH terms: Cysteine/genetics
  3. Tan SH, Normi YM, Leow AT, Salleh AB, Karjiban RA, Murad AM, et al.
    BMC Struct Biol, 2014 Mar 19;14:11.
    PMID: 24641837 DOI: 10.1186/1472-6807-14-11
    BACKGROUND: At least a quarter of any complete genome encodes for hypothetical proteins (HPs) which are largely non-similar to other known, well-characterized proteins. Predicting and solving their structures and functions is imperative to aid understanding of any given organism as a complete biological system. The present study highlights the primary effort to classify and cluster 1202 HPs of Bacillus lehensis G1 alkaliphile to serve as a platform to mine and select specific HP(s) to be studied further in greater detail.

    RESULTS: All HPs of B. lehensis G1 were grouped according to their predicted functions based on the presence of functional domains in their sequences. From the metal-binding group of HPs of the cluster, an HP termed Bleg1_2507 was discovered to contain a thioredoxin (Trx) domain and highly-conserved metal-binding ligands represented by Cys69, Cys73 and His159, similar to all prokaryotic and eukaryotic Sco proteins. The built 3D structure of Bleg1_2507 showed that it shared the βαβαββ core structure of Trx-like proteins as well as three flanking β-sheets, a 310 -helix at the N-terminus and a hairpin structure unique to Sco proteins. Docking simulations provided an interesting view of Bleg1_2507 in association with its putative cytochrome c oxidase subunit II (COXII) redox partner, Bleg1_2337, where the latter can be seen to hold its partner in an embrace, facilitated by hydrophobic and ionic interactions between the proteins. Although Bleg1_2507 shares relatively low sequence identity (47%) to BsSco, interestingly, the predicted metal-binding residues of Bleg1_2507 i.e. Cys-69, Cys-73 and His-159 were located at flexible active loops similar to other Sco proteins across biological taxa. This highlights structural conservation of Sco despite their various functions in prokaryotes and eukaryotes.

    CONCLUSIONS: We propose that HP Bleg1_2507 is a Sco protein which is able to interact with COXII, its redox partner and therefore, may possess metallochaperone and redox functions similar to other documented bacterial Sco proteins. It is hoped that this scientific effort will help to spur the search for other physiologically relevant proteins among the so-called "orphan" proteins of any given organism.

    Matched MeSH terms: Cysteine/genetics
  4. Tan JH, Low PS, Tan YS, Tong MC, Saha N, Yang H, et al.
    Hum Genet, 2003 Jul;113(2):106-17.
    PMID: 12709788
    Mutations in the ATP-binding cassette transporter ABCA1 underlie Tangier disease and familial hypoalphaliproteinemia (FHA), disorders that are characterised by reduced high-density lipoprotein-cholesterol (HDL-C) concentration and cholesterol efflux, and increased coronary artery disease (CAD). We explored if polymorphisms in the ABCA1 gene are associated with CAD and variations in plasma lipid levels, especially HDL-C, and whether the associations may depend on ethnicity. Male cases and controls from the Singapore Chinese, Malay and Indian populations were genotyped for five ABCA1 single nucleotide polymorphisms. Various single-locus frequency distribution differences between cases and controls were detected in different ethnic groups: the promoter -14C>T in Indians, exon 18 M883I in Malays, and 3'-untranslated (UTR) region 8994A>G in Chinese. For the Malay population, certain haplotypes carrying the I825- A (exon 17) and M883- G alleles were more frequent among cases than controls, whereas the converse was true for the alternative configuration of V825- G and I883- A, and this association was reinforced in multi-locus disequilibrium analysis that utilized genotypic data. In the healthy controls, associations were found for -14C>T genotypes with HDL-C in Chinese; 237indelG (5'UTR) with apolipoprotein A1 (apoA1) in Malays and total cholesterol (TC) in Indians; M883I with lipoprotein(a) [Lp(a)] in Malays and apolipoprotein B (apoB) in Chinese; and 8994A>G with Lp(a) in Malays, and TC, low-density lipoprotein-cholesterol (LDL-C) as well as apoB in Indians. While genotype-phenotype associations were not reproduced across populations and loci, V825I and M883I were clearly associated with CAD status in Malays with no effects on HDL-C or apoA1.
    Matched MeSH terms: Cysteine/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links