Displaying all 5 publications

Abstract:
Sort:
  1. Islam MT, Islam MM, Samsuzzaman M, Faruque MR, Misran N
    Sensors (Basel), 2015 May 20;15(5):11601-27.
    PMID: 26007721 DOI: 10.3390/s150511601
    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors.
    Matched MeSH terms: Diagnostic Imaging/instrumentation*
  2. Rahman HA, Harun SW, Arof H, Irawati N, Musirin I, Ibrahim F, et al.
    J Biomed Opt, 2014 May;19(5):057009.
    PMID: 24839996 DOI: 10.1117/1.JBO.19.5.057009
    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
    Matched MeSH terms: Diagnostic Imaging/instrumentation
  3. Chew KM, Sudirman R, Seman N, Yong CY
    Biomed Mater Eng, 2014;24(1):199-207.
    PMID: 24211899 DOI: 10.3233/BME-130800
    The study was conducted based on two objectives as framework. The first objective is to determine the point of microwave signal reflection while penetrating into the simulation models and, the second objective is to analyze the reflection pattern when the signal penetrate into the layers with different relative permittivity, εr. Thus, several microwave models were developed to make a close proximity of the in vivo human brain. The study proposed two different layers on two different characteristics models. The radii on the second layer and the corresponding antenna positions are the factors for both models. The radii for model 1 is 60 mm with an antenna position of 10 mm away, in contrast, model 2 is 10 mm larger in size with a closely adapted antenna without any gap. The layers of the models were developed with different combination of materials such as Oil, Sandy Soil, Brain, Glycerin and Water. Results show the combination of Glycerin + Brain and Brain + Sandy Soil are the best proximity of the in vivo human brain grey and white matter. The results could benefit subsequent studies for further enhancement and development of the models.
    Matched MeSH terms: Diagnostic Imaging/instrumentation
  4. Tai LY, Khaw KW, Ng CM, Subrayan V
    Cornea, 2013 Jun;32(6):766-71.
    PMID: 23095499 DOI: 10.1097/ICO.0b013e318269938d
    The aim of this study was to compare 4 methods of central corneal thickness (CCT) measurements in terms of their agreement, repeatability, and measurement time.
    Matched MeSH terms: Diagnostic Imaging/instrumentation*
  5. Reza AW, Eswaran C, Dimyati K
    J Med Syst, 2011 Dec;35(6):1491-501.
    PMID: 20703768 DOI: 10.1007/s10916-009-9426-y
    Due to increasing number of diabetic retinopathy cases, ophthalmologists are experiencing serious problem to automatically extract the features from the retinal images. Optic disc (OD), exudates, and cotton wool spots are the main features of fundus images which are used for diagnosing eye diseases, such as diabetic retinopathy and glaucoma. In this paper, a new algorithm for the extraction of these bright objects from fundus images based on marker-controlled watershed segmentation is presented. The proposed algorithm makes use of average filtering and contrast adjustment as preprocessing steps. The concept of the markers is used to modify the gradient before the watershed transformation is applied. The performance of the proposed algorithm is evaluated using the test images of STARE and DRIVE databases. It is shown that the proposed method can yield an average sensitivity value of about 95%, which is comparable to those obtained by the known methods.
    Matched MeSH terms: Diagnostic Imaging/instrumentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links