Elbow length PVC gloves are often recommended for protection against organophosphorus pesticide (OP) exposure in agriculture. However, performance may be reduced due to high temperature, UV exposure and abrasion. We sought to assess these impacts for two OPs under normal use and reasonable worst-case scenarios. Glove permeation tests were conducted using ASTM cells with two PVC glove brands at 23°C and 45°C for up to 8 h. Technical grade dichlorvos and formulated diazinon were used undiluted and at application strength. Breakthough of undiluted dichlorvos occurred at both 23°C and 45°C, but only at 45°C for application strength. Breakthrough of diazinon was not achieved, except when undiluted at 45°C. UV-exposed and abraded gloves showed reduced performance, with the effect being approximately two-fold for dichlorvos. Only small differences were noted between glove brands. Extra precautions should be taken when handling concentrated OPs at high temperature, or when using abraded or sunlight-exposed gloves.
An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R(2)=0.98, n=3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90mM AChCl (R(2)=0.984, n=6). The response time of the biosensor is 12min. Based on the optimum incubation time of 15min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7mg/L of dichlorvos (17-85% inhibition, R(2)=0.991, n=9). The detection limit for dichlorvos was 0.5mg/L. The results of the analysis of 1.7-6.0mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.
The resistant level of the houseflies to six kinds of insecticides, DDT, Resmethrin, DDVP, Baytex, Sumithion and Diazinon, was examined on the seven strains collected in Malaysia. It was found that their susceptibility is rather higher than that of the Takatsuki strain which is a standard strain in Japan. However, their susceptibility to Sumithion was the same or slightly lower than that of the Takatsuki strain. The resistant level to five of six kinds of insecticides was the highest in the strain of Cameron Highland. The values were close to Singh's data in 1973, and this means that the resistance of the houseflies to the insecticides is increasing in Malaysia.