Dicofol, an extensively used organochlorine pesticide and a recommended Stockholm convention persistent organic pollutant (POP) candidate is well known for its endocrine disruptive properties. The sonochemical degradation of Dicofol in aqueous media has been investigated using a 20-kHz probe type sonicator with power inputs from 150 to 450 W. The degradation rate was determined as a function of concentration of Dicofol, solution pH, bulk phase temperature, ultrasonic power density and H2O2 addition. At optimum operating conditions, the pseudo-first-order degradation rate constant (k) was determined to be 0.032 min-1 and the extent of degradation was found to be 86% within 60 min of ultrasound treatment. High performance liquid chromatography (HPLC) and Gas chromatography coupled with mass spectroscopy (GC-MS) analysis indicated the presence of degraded products. The obtained results of Dicofol degradation and control experiments in the presence of H2O2 and radical scavenger test suggest thermal decomposition along with radical attack at bubble-vapor interface to be the dominant degradation pathway. Sonochemical treatment is effective and promising for successful removal of harmful pesticides such as Dicofol and superior removal efficiency for other POPs is expected in the near future with the successful implementation of ultrasound-based wastewater treatment.
Dicofol, a recommended Stockholm convention persistent organic pollutants (POPs) candidate is well known for its endocrine disruptive properties and has been extensively used as an organochlorine pesticide worldwide. The hydrodynamic cavitation (HC) treatment of Dicofol in aqueous media induced by a liquid whistle hydrodynamic cavitaion reactor (LWHCR) has been investigated while considering important parameters such as inlet pressure, initial concentration of Dicofol, solution temperature, pH, addition of H2O2 and radical scavenger for the extent of degradation. The pseudo-first-order degradation rate constant (k) was determined to be 0.073 min-1 with a cavitational yield of 1.26 × 10-5 mg/J at optimum operating conditions and a complete removal of Dicofol was achieved within 1 h of treatment. Considering the removal rate and energy efficiency, the optimal inlet pressure was found to be 7 bar, resulting in a cavitation number of 0.17. High performance liquid chromatography (HPLC) and Gas chromatography mass spectroscopy (GC-MS) analyses indicated a sharp decline in the concentration of Dicofol with treatment time and indicated the presence of degraded products. An 85% total organic carbon (TOC) removal was achieved within 1 h of treatment time, demonstrating successful mineralization of Dicofol. The obtained results suggest that the degradation of Dicofol followed thermal decomposition and successive recombination reactions at bubble-vapor interface. Overall, the attempted hydrodynamic cavitation demonstrated successful and rapid removal of endocrine disruptive chemicals such as Dicofol and is expected to provide efficient solution for wastewater treatment.
Five pesticides were evaluated against laboratory colonies of Leptotrombidium fletcheri (Womersly and Heaslip) by the Pasteur pipet technique. The pesticides were dieldrin (LC50 = 3.6 ppm, LC99 = 18.2 ppm), bromopropylate (LC50 = 9.2 ppm, LC99 = 239.6 ppm), dicofol (LC50 = 27.8 ppm, LC99 = 118.1 ppm), fenthion (LC50 = 15.4 ppm, LC99 = 29.7 ppm), and malathion (LC50 = 84.7 ppm, LC99 = 313.9 ppm). Dieldrin was the most toxic. Dicofol was recommended for further evaluation in field trials.