Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Nazli MH, Halim RA, Abdullah AM, Hussin G, Samsudin AA
    Trop Anim Health Prod, 2018 Jun;50(5):1119-1124.
    PMID: 29455428 DOI: 10.1007/s11250-018-1538-2
    The potential of using whole corn crop silage and rice straw as an alternative feed for the beef cattle based on the intake and growth performance were evaluated. Using randomised completely block design, nine adult Mafriwal cattle were blocked intro three groups and treated with three different forage diets supplemented with 20% pelleted palm kernel cake on dry matter basis. The treatments were 100% rice straw (RS), 100% corn silage (CS) and an equal mixture of rice straw and corn silage (MIX) fed ad libitum. The animals were housed in individual pens, and the feeding trial was conducted for 12 weeks with 2 weeks of adaptation period. The results showed that CS had the best feed nutritive composition with the lowest concentration of highly indigestible fibre and the highest concentration of organic matter and energy. The CS also had the highest intake, and the corn silage inclusion in MIX managed to improve the intake on par with CS in terms of the dry matter intake of body weight (DMI of BW), voluntary intake (VI) and crude protein (CP) intake. Cattle fed with CS gave the highest and most stable BW gain with an average daily gain (ADG) of 808 g/day rivalling cross-bred cattle fed with high amount of concentrates. The all straw diet (RS) supplemented with PKC recorded a positive ADG of 133 g/day while the MIX gave 383 g/day matching total Napier grass diet.
    Matched MeSH terms: Dietary Fiber/analysis
  2. Ooi DJ, Iqbal S, Ismail M
    Molecules, 2012 Sep 17;17(9):11139-45.
    PMID: 22986924 DOI: 10.3390/molecules170911139
    This study presents the proximate and mineral composition of Peperomia pellucida L., an underexploited weed plant in Malaysia. Proximate analysis was performed using standard AOAC methods and mineral contents were determined using atomic absorption spectrometry. The results indicated Peperomia pellucida to be rich in crude protein, carbohydrate and total ash contents. The high amount of total ash (31.22%)suggests a high-value mineral composition comprising potassium, calcium and iron as the main elements. The present study inferred that Peperomia pellucida would serve as a good source of protein and energy as well as micronutrients in the form of a leafy vegetable for human consumption.
    Matched MeSH terms: Dietary Fiber/analysis
  3. Abdul Aziz NA, Wong LM, Bhat R, Cheng LH
    J Sci Food Agric, 2012 Feb;92(3):557-63.
    PMID: 25363645 DOI: 10.1002/jsfa.4606
    Mango is a highly perishable seasonal fruit and large quantities are wasted during the peak season as a result of poor postharvest handling procedures. Processing surplus mango fruits into flour to be used as a functional ingredient appears to be a good preservation method to ensure its extended consumption.
    Matched MeSH terms: Dietary Fiber/analysis
  4. Murtey MD, Seeni A
    J Sci Food Agric, 2020 Sep;100(12):4347-4352.
    PMID: 32248531 DOI: 10.1002/jsfa.10406
    Rice serves as a staple food for one-half of the global population. However, rice production, particularly the rice milling process, results in a substantial amount of paddy waste products (e.g. bran, husk and straw) annually. Because the potentials of bran have been extensively explored in prior studies, the present review focuses exclusively on the phytochemical analysis and pharmacological potentials of husk and straw. This comprehensive review establishes a solid foundation for promoting husk and straw as medicinal substances given their promising pharmacological potentials as bioactive compound sources with therapeutic functions. © 2020 Society of Chemical Industry.
    Matched MeSH terms: Dietary Fiber/analysis
  5. Soo YT, Ng SW, Tang TK, Ab Karim NA, Phuah ET, Lee YY
    J Sci Food Agric, 2021 Aug 15;101(10):4161-4172.
    PMID: 33428211 DOI: 10.1002/jsfa.11054
    BACKGROUND: Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability.

    RESULTS: PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL.

    CONCLUSIONS: CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Dietary Fiber/analysis*
  6. Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R
    J Sci Food Agric, 2024 Apr;104(6):3216-3227.
    PMID: 38072678 DOI: 10.1002/jsfa.13208
    BACKGROUND: Kenaf seeds are underutilized kenaf plant by-products, containing essential nutrients including dietary fiber (DF), which can be potentially utilized as food ingredients. The present study aimed to evaluate the physicochemical characteristics of kenaf seed fiber fractions extracted from kenaf seed.

    RESULTS: Defatted kenaf seed powder yielded four DF fractions: alkali-soluble hemicellulose (146.4 g kg-1 ), calcium-bound pectin (10.3 g kg-1 ) and acid-soluble pectin (25.4 g kg-1 ) made up the soluble fibre fraction, whereas cellulose (202.2 g kg-1 ) comprised the insoluble fraction. All fractions were evaluated for their physicochemical properties. The DF fractions contained glucose, mannose, xylose and arabinose, and a small amount of uronic acid (1.2-2.7 g kg-1 ). The isolated pectin fractions had a low degree of esterification (14-30%). All the isolated DF fractions had high average molecular weights ranging from 0.3 to 4.3 × 106 g mol-1 . X-ray diffractogram analysis revealed that the fractions consisted mainly of an amorphous structure with a relative crystallinity ranging from 31.6% to 44.1%. The Fourier-transform infrared spectroscopy spectrum of kenaf seed and its DF fractions showed typical absorption of polysaccharides, with the presence of hydroxyl, carboxyl, acetyl and methyl groups. Scanning electron microscopy analysis demonstrated that the raw material with the rigid structure resulted in soluble and insoluble DF fractions with more fragile and fibrous appearances, respectively. The soluble DF demonstrated greater flowability and compressibility than the insoluble fractions.

    CONCLUSION: These findings provide novel information on the DF fractions of kenaf seeds, which could be used as a potential new DF for the food industry. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Dietary Fiber/analysis
  7. Shahmohammadi HR, Bakar J, Rahman RA, Adzhan NM
    J Food Sci, 2014 Feb;79(2):E178-83.
    PMID: 24410375 DOI: 10.1111/1750-3841.12324
    To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 μm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 μm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number.
    Matched MeSH terms: Dietary Fiber/analysis
  8. Noor Aziah AA, Komathi CA
    J Food Sci, 2009 Sep;74(7):S328-33.
    PMID: 19895499 DOI: 10.1111/j.1750-3841.2009.01298.x
    This study was intended to investigate the potential of peeled and unpeeled pumpkin pulp as a raw material for the production of flour that could be used in composite blend with wheat flour or as a functional ingredient in food products. The peeled and unpeeled pumpkin pulp were soaked in sodium metabisulphite solution, sliced and dried overnight in a hot air oven, followed by milling into peeled pumpkin pulp flour (PPPF) and unpeeled pumpkin pulp flour (UPPF), respectively. The flours were then evaluated for physicochemical attributes (color, proximate compositions, and water activity) and functional properties (water holding capacity and oil holding capacity), in comparison to the commercial wheat flour. PPPF and UPPF were observed to be more attractive in terms of color than wheat flour, as indicated by the significantly higher results (P fiber content. No significant difference (P >or= 0.05) was shown in water holding capacity of PPPF and wheat flour. However, the oil holding capacity of PPPF and UPPF was shown to be significantly higher (P
    Matched MeSH terms: Dietary Fiber/analysis*
  9. Lim SY, Tham PY, Lim HYL, Heng WS, Chang YP
    J Food Sci, 2018 Jun;83(6):1522-1532.
    PMID: 29745989 DOI: 10.1111/1750-3841.14155
    The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study.

    PRACTICAL APPLICATION: To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them.

    Matched MeSH terms: Dietary Fiber/analysis
  10. Lau BF, Abdullah N, Aminudin N
    J Agric Food Chem, 2013 May 22;61(20):4890-7.
    PMID: 23597270 DOI: 10.1021/jf4002507
    The chemical composition of the tiger's milk mushroom (Lignosus rhinocerotis) from different developmental stages, i.e., the fruit body, sclerotium, and mycelium, was investigated for the first time. The fruit body and sclerotium of L. rhinocerotis were rich in carbohydrates and dietary fibers but low in fat. Protein levels in L. rhinocerotis were moderate, and all essential amino acids, except tryptophan, were present. The mycelium contained high levels of potassium, phosphorus, magnesium, riboflavin, and niacin and appreciable amounts of essential fatty acids. The results indicated that the sclerotium of L. rhinocerotis that was used in ethnomedicine was not superior to the fruit body and mycelium with regard to the nutritional content and bioactive constituents. Our findings provide some insights into the selection of appropriate mushroom part(s) of L. rhinocerotis and proper cultivation techniques for the development of new nutraceuticals or dietary supplements.
    Matched MeSH terms: Dietary Fiber/analysis
  11. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2011 Aug 10;59(15):8140-7.
    PMID: 21711050 DOI: 10.1021/jf2009342
    This study explored the potential of soluble dietary fiber (SDF) from agrowastes, okara (soybean solid waste), oil palm trunk (OPT), and oil palm frond (OPF) obtained via alkali treatment, in the nanoencapsulation of Lactobacillus acidophilus . SDF solutions were amended with 8% poly(vinyl alcohol) to produce nanofibers using electrospinning technology. The spinning solution made from okara had a higher pH value at 5.39 ± 0.01 and a higher viscosity at 578.00 ± 11.02 mPa·s (P < 0.05), which resulted in finer fibers. FTIR spectra of nanofibers showed the presence of hemicellulose material in the SDF. Thermal behavior of nanofibers suggested possible thermal protection of probiotics in heat-processed foods. L. acidophilus was incorporated into the spinning solution to produce nanofiber-encapsulated probiotic, measuring 229-703 nm, visible under fluorescence microscopy. Viability studies showed good bacterial survivability of 78.6-90% under electrospinning conditions and retained viability at refrigeration temperature during the 21 day storage study.
    Matched MeSH terms: Dietary Fiber/analysis*
  12. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2010 Jul 14;58(13):8077-84.
    PMID: 20568772 DOI: 10.1021/jf1012506
    Oil palm trunk (OPT), oil palm frond (OPF), and okara are agrowastes generated abundantly by the palm oil and soy industries. There are vast potentials for these fibrous biomass rather than disposal at landfills or incineration. Fibrous materials (FM) and alkali-treated fibrous residues (FR) were produced from the selected wastes and subsequently characterized. Functional properties such as emulsifying properties, mineral-binding capacity, and free radical scavenging activity were also evaluated for possible development of functional products. Supernatants (FS) generated from the alkaline treatment contained soluble fractions of fibers and were also characterized and used for the production of nanofibers. Okara FM had the highest (P < 0.05) protein (31.5%) and fat (12.2%) contents, which were significantly reduced following alkali treatment. The treatment also increased total dietary fiber (TDF) in okara by 107.9%, in OPT by 67.2%, and in OPF by 25.1%. The increased fiber fractions in FR enhanced functional properties such as water-holding capacities and oil-holding capacities. Okara displayed the highest (P < 0.05) emulsifying properties compared to OPT and OPF. High IDF content of OPT and OPF contributed to high antioxidant activities (377.2 and 367.8% higher than that of okara, respectively; P < 0.05). The soluble fraction from alkali treatment of fibers was successfully electrospun into nanofibers, which can be further developed into nanoencapsulants for bioactive compound or drug delivery.
    Matched MeSH terms: Dietary Fiber/analysis*
  13. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA
    J Agric Food Chem, 2011 Apr 27;59(8):3980-5.
    PMID: 21388187 DOI: 10.1021/jf103956g
    A dried high fiber product from bambangan (Mangifera pajang Kort.) fruit pulp was prepared and evaluated for proximate composition, functional properties, and soluble and insoluble dietary fiber composition. Mangifera pajang fibrous (MPF) consisted of 4.7% moisture, 0.8% fat, 4% protein, and 30 mg total polyphenol per g of dry sample, and 9, 79 and 88% soluble, insoluble and total dietary fiber, respectively. Water holding capacity, oil holding capacity, swelling, and solubility were found to be 9 g/g dry sample, 4 g/g dry sample, 16 mL/g dry sample, and 11%, respectively. The glucose dialysis retardation index of MPF was approximately double that of cellulose fiber. Soluble dietary fiber contained mannose, arabinose, glucose, rhamnose, erythrose, galactose, xylose, and fucose at 1.51, 0.72, 0.39, 0.16, 0.14, 0.05, 0.04, and 0.01%, respectively, with 5.8% uronic acid, while insoluble dietary fiber was composed of arabinose (18.47%), glucose (4.46%), mannose (3.15%), rhamnose (1.65%), galactose (1.20%), xylose (0.99%), and fucose (0.26%) with 15.5% uronic acid and 33.1% klason lignin. These characteristics indicate that MPF is a rich source of dietary fiber and has physicochemical properties which make it suitable as an added ingredient in various food products and/or dietetic, low-calorie high-fiber foods to enhance their nutraceutical properties.
    Matched MeSH terms: Dietary Fiber/analysis
  14. Kuan YH, Liong MT
    J Agric Food Chem, 2008 Oct 8;56(19):9252-7.
    PMID: 18788708 DOI: 10.1021/jf802011j
    The objective of this study was to evaluate the chemical, physicochemical, and functional properties of agrowastes derived from okara ( Glycine max), corn cob ( Zea mays sp.), wheat straw ( Triticum sp.), and rice husk ( Oryza sativa) for potential applications in foods. The fibrous materials (FM) were treated with alkali to yield fibrous residues (FR). Rice husk contained the highest ash content (FM, 8.56%; FR, 9.04%) and lowest lightness in color (FM, 67.63; FR, 63.46), possibly due to the abundance of mineral constituents. Corn cob contained the highest amount of soluble dietary fiber (SDF), whereas okara had the highest total dietary fiber (TDF). The high dietary fiber fractions of corn cob and okara also contributed to the highest water- and oil-holding capacities, emulsifying activities, and emulsion stabilities for both FM and FR samples. These results indicate that these agrowastes could be utilized as functional ingredients in foods.
    Matched MeSH terms: Dietary Fiber/analysis
  15. Aziah AA, Min WL, Bhat R
    Int J Food Sci Nutr, 2011 Sep;62(6):559-67.
    PMID: 21534889 DOI: 10.3109/09637486.2011.562883
    Sponge cake prepared by partial substitution of wheat flour with mango pulp and mango peel flours (MPuF and MPeF, respectively) at different concentrations (control, 5%, 10%, 20% or 30%) were investigated for the physico-chemical, nutritional and organoleptic characteristics. Results showed sponge cake incorporated with MPuF and MPeF to have high dietary fiber with low fat, calorie, hydrolysis and predicted glycemic index compared with the control. Increasing the levels of MPuF and MPeF in sponge cake had significant impact on the volume, firmness and color. Sensory evaluation showed sponge cake formulated with 10% MPuF and 10% MPeF to be the most acceptable. MPeF and MPuF have high potential as fiber-rich ingredients and can be utilized in the preparation of cake and other bakery products to improve the nutritional qualities.
    Matched MeSH terms: Dietary Fiber/analysis*
  16. Haslinda WH, Cheng LH, Chong LC, Noor Aziah AA
    Int J Food Sci Nutr, 2009;60 Suppl 4:232-9.
    PMID: 19449278 DOI: 10.1080/09637480902915525
    Flour was prepared from peeled and unpeeled banana Awak ABB. Samples prepared were subjected to analysis for determination of chemical composition, mineral, dietary fibre, starch and total phenolics content, antioxidant activity and pasting properties. In general, flour prepared from unpeeled banana was found to show enhanced nutrition values with higher contents of mineral, dietary fibre and total phenolics. Hence, flour fortified with peel showed relatively higher antioxidant activity. On the other hand, better pasting properties were shown when banana flour was blended with peel. It was found that a relatively lower pasting temperature, peak viscosity, breakdown, final viscosity and setback were evident in a sample blended with peel.
    Matched MeSH terms: Dietary Fiber/analysis
  17. Kian LK, Saba N, Jawaid M, Fouad H
    Int J Biol Macromol, 2020 Aug 01;156:347-353.
    PMID: 32278601 DOI: 10.1016/j.ijbiomac.2020.04.015
    Olive fiber is a renewable natural fiber which has potential as an alternative biomass for extraction of microcrystalline cellulose (MCC). MCC has been widely applied in various industries owing to its small dimensional size for ease of reactive fabrication process. At present study, a serial treatments of bleaching, alkaline and acid hydrolysis was employed to extract OL-BLF, OL-PUF, and OL-MCC respectively from olive stem fiber. In morphology examination, a feature of short micro-crystallite particles was obtained for OL-MCC. The particle size was found gradually reducing from OL-PUF (305.31 μm) to OL-MCC (156.06 μm) due to the disintegration of cellulose fibrils. From physicochemical analysis, most lignin and hemicellulose components had been removed from OL-BLF to form OL-PUF with individually fibril structure. The elemental analysis revealed that highly pure cellulose component was obtained for OL-MCC. Also, the rigidity had been improved from OL-BLF to OL-PUF, while with the highest for OL-MCC with 74.2% crystallinity, endowing it as a reliable load-bearing agent. As for thermal analysis, OL-MCC had the most stable heat resistance in among the chemically-treated fibers. Therefore, olive MCC could act as a promising reinforcing agent to withstand harsh conditions for variety fields of composite applications.
    Matched MeSH terms: Dietary Fiber/analysis*
  18. Rasheed M, Jawaid M, Parveez B, Zuriyati A, Khan A
    Int J Biol Macromol, 2020 Oct 01;160:183-191.
    PMID: 32454108 DOI: 10.1016/j.ijbiomac.2020.05.170
    This work investigates the extraction of cellulose nanocrystals (CNC) from bamboo fibre as an alternative approach to utilize the waste bamboo fibre. In this study, bamboo fibre was subjected to acid hydrolysis for efficient isolation of CNC from bamboo fibre. The extracted CNC's were morphologically, characterized via Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The energy Dispersive X-rays (EDX) provided the elemental composition of the prepared CNC's and X-ray diffractometer (XRD) exhibited their crystallinity. The physiochemical analysis was done via Fourier Transform Infrared (FTIR); and their thermal analysis was revealed by Thermogravimetric Analysis (TGA) and Differential scanning calorimetry (DSC). As from their morphological investigations, rod like structures of CNC's were observed under SEM analysis with higher carbon content as demonstrated by EDX, while needle shaped CNC's were observed from TEM and AFM studies. Acid hydrolysis for 45 min resulted into higher degree of crystallinity and higher yield of CNC's about 86.96% and 22% respectively. Owing to higher quality of CNC's obtained as a result of efficient and modified techniques, these can find potential usage in nanocomposites for biomedical and food packaging application.
    Matched MeSH terms: Dietary Fiber/analysis*
  19. Mohd Fauziee NA, Chang LS, Wan Mustapha WA, Md Nor AR, Lim SJ
    Int J Biol Macromol, 2021 Jan 15;167:1135-1145.
    PMID: 33188815 DOI: 10.1016/j.ijbiomac.2020.11.067
    Brown seaweeds are rich source of functional polysaccharides that exhibit various bioactivities. However, Malaysian seaweeds are under-utilised, leading to low revenue throughout the supply chain of the seaweed industry. The aims of this study were to extract the functional polysaccharides, namely fucoidan (F), laminaran (L) and alginate (A) from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana) and subsequently evaluate the properties of the extracted polysaccharides. P. boryana recorded the significantly (p ≤ 0.05) highest carbohydrate content (74.78 ± 1.63%) with highest fucoidan yield (Fpad = 1.59 ± 0.16%) while T. ornata contained significantly (p ≤ 0.05) highest alginate yield (Atur = 105.19 ± 3.45%). Water activities of these extracted polysaccharides varied from 0.63-0.71 with average score of browning indexes (~40). Fourier transform infrared (FTIR) spectroscopy analysis demonstrated that the extracted polysaccharides exhibited similar spectral pattern of spectra with the respective standards. Meanwhile, laminaran extracts showed the significantly highest (p ≤ 0.05) total phenolic contents (Lsar = 43.29 ± 0.43 mgGAE/g) and superoxide anion scavenging activity (Lsig = 21.7 ± 3.6%). On the other hand, the significantly highest (p ≤ 0.05) DPPH scavenging activity was recorded in alginate with Asar at 85.3 ± 0.8%. These findings reported the properties and bioactivities of natural polysaccharides from Malaysian brown seaweeds that revealed the potential to develop high-value functional ingredients from Malaysian brown seaweeds.
    Matched MeSH terms: Dietary Fiber/analysis
  20. Sujithra S, Arthanareeswaran G, Ismail AF, Taweepreda W
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128255.
    PMID: 37984576 DOI: 10.1016/j.ijbiomac.2023.128255
    β-glucans are soluble fibers found in cereal compounds, including barley, oats etc., as an active component. They are used as a dietary fiber to treat cholesterol, diabetes and cardiovascular diseases. These polysaccharides are important because they can provide many therapeutic benefits related to their biological activity in human like inhibiting tumour growth, anti-inflammatory action, etc. All these activities were usually attached to their molecular weight, structure and degree of branching. The present manuscript reviews the background of β-glucan, its characterization techniques, the possible ways to extract β-glucan and mainly focuses on membrane-based purification techniques. The β-glucan separation methods using polymeric membranes, their operational characteristics, purification methods which may yield pure or crude β-glucan and structural analysis methods were also discussed. Future direction in research and development related to β-glucan recovery from cereal were also offered.
    Matched MeSH terms: Dietary Fiber/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links