Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Zamri-Saad M, al-Ajeeli KS, Ibrahim AL
    Trop Anim Health Prod, 1992 Aug;24(3):177-8.
    PMID: 1304665
    Matched MeSH terms: Disease Outbreaks/veterinary*
  2. Yang CY, Chang PC, Hwang JM, Shieh HK
    Avian Dis, 1997 Apr-Jun;41(2):365-73.
    PMID: 9201401
    Portions of the hemagglutinin neuraminidase (HN) gene of Newcastle disease virus (NDV) isolates from two recent outbreaks were sequenced to investigate epidemiology of this disease in Taiwan. These NDV isolates were all viscerotropic velogenic according to the clinical lesions produced in chickens. Sequence data were obtained from 14 NDV isolates (12 from 1995 and 2 from 1984). All isolates differed in their nucleotide sequences (from 0.3 to 15.3%), and represented potentially different strains of NDV. Phylogenetic analysis revealed that these isolates are closely related to viruses isolated from Japan and Malaysia. Some viruses isolated in 1995 appeared to evolve from viruses isolated in 1984. The results suggest that the 1995 outbreak of Newcastle disease (ND) in Taiwan may have been caused by multiple strains of velogenic NDV that have cocirculated in Taiwan for some time. Moreover, NDV isolates from racing pigeons were very similar to isolates from chickens in the same period, suggesting that both domestic and free-living birds were involved in the spread of ND in Taiwan.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  3. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al.
    Transbound Emerg Dis, 2019 Sep;66(5):1884-1893.
    PMID: 31059176 DOI: 10.1111/tbed.13218
    Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  4. Tan DY, Hair-Bejo M, Omar AR, Aini I
    Avian Dis, 2004 Apr-Jun;48(2):410-6.
    PMID: 15283430
    The characteristics of the pathogenic infectious bursal disease virus (IBDV) that infected avian species other than commercial chickens were largely unknown. In this study, by using in vivo and molecular methods, we had characterized an IBDV isolate (named 94268) isolated from an infectious bursal disease (IBD) outbreak in Malaysian village chickens--the adulterated descendant of the Southeast Asian jungle fowl (Gallus bankiva) that were commonly reared in the backyard. The 94268 isolate was grouped as the very virulent IBDV (vvIBDV) strain because it caused severe lesions and a high mortality rate in village chickens (>88%) and experimentally infected specific-pathogen-free chickens (>66%). In addition, it possessed all of the vvIBDV molecular markers in its VP2 gene. Phylogenetic analysis using distance, maximum parsimony, and maximum likelihood methods revealed that 94268 was monophyletic with other vvIBDV isolates and closely related to the Malaysian vvIBDV isolates. Given that the VP2 gene of 94268 isolate was almost identical and evolutionarily closely related to other field IBDV isolates that affected the commercial chickens, we therefore concluded that IBD infections had spread across the farm boundary. IBD infection in the village chicken may represent an important part of the IBD epidemiology because these birds could harbor the vvIBDV strain and should not be overlooked in the control and prevention of the disease.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  5. Syamsiah Aini S, Leow BL, Faizul Fikri MY, Muhammad Redzwan S, Faizah Hanim MS
    Trop Biomed, 2022 Dec 01;39(4):579-586.
    PMID: 36602219 DOI: 10.47665/tb.39.4.015
    Newcastle disease (ND) is an extremely contagious and fatal viral disease causing huge economic losses to the poultry industry. Following recent ND outbreaks in Sabah in commercial poultry and backyard farms, it was speculated that this could be due to a new introduction of Newcastle Disease Virus (NDV) genotype/sub-genotype. Here we report the genetic characterization of NDVs isolated from Sabah during early 2021. All isolates were amplified and sequenced with primers specific to the viral fusion (F) gene using reverse transcription-polymerase chain reaction (RT-PCR). Nucleotide sequence analysis of the F gene showed that all isolates shared similar homology of 99.4% with NDV strain from Iran isolated in 2018. Amino acid sequences of the F protein cleavage site revealed the motif of 112RRQKRF117 indicating all isolates were of virulent strain. Phylogenetic analysis demonstrated that all isolates were clustered under sub-genotype VII 1.1 and clustered together with isolates from Iran (previously known as subgenotype VIIl). The present findings suggested that there is an emerging of a new sub-genotype into the poultry population in Sabah and this sub-genotype has never been reported before in Malaysia. Therefore, transboundary monitoring and continuous surveillance should be implemented for proper control and prevention of the disease. A further molecular epidemiological analysis of NDV is needed to well understand the circulatory patterns of virulent strains of NDV in the country to prevent future outbreaks.
    Matched MeSH terms: Disease Outbreaks/veterinary
  6. Sosa Portugal S, Cortey M, Tello M, Casanovas C, Mesonero-Escuredo S, Barrabés S, et al.
    Transbound Emerg Dis, 2021 Mar;68(2):519-530.
    PMID: 32619306 DOI: 10.1111/tbed.13709
    The present study was aimed to assess the diversity of influenza A viruses (IAV) circulating in pig farms in the Iberian Peninsula. The study included two different situations: farms suffering respiratory disease outbreaks compatible with IAV (n = 211) and randomly selected farms without overt respiratory disease (n = 19). Initially, the presence of IAV and lineage determination was assessed by qRT-PCR using nasal swabs. IAV was confirmed in 145 outbreaks (68.7%), mostly in nurseries (53/145; 36.5%). Subtyping by RT-qPCR was possible in 94 of those cases being H1avN2hu (33.6%), H1avN1av (24.3%) and H1huN2hu (18.7%), the most common lineages. H3huN2hu and H1pdmN1pdm represented 7.5% and 6.5% of the cases, respectively. As for the randomly selected farms, 15/19 (78.9%) were positive for IAV. Again, the virus was mostly found in nurseries and H1avN2hu was the predominant lineage. Virus isolation in MDCK cells was attempted from positive cases. Sixty of the isolates were fully sequenced with Illumina MiSeq®. Within those 60 isolates, the most frequent genotypes had internal genes of avian origin, and these were D (19/60; 31.7%) and A (11/60; 18.3%), H1avN2hu and H1avN1av, respectively. In addition, seven previously unreported genotypes were identified. In two samples, more than one H or N were found and it was not possible to precisely establish their genotypes. A great diversity was observed in the phylogenetic analysis. Notably, four H3 sequences clustered with human isolates from 2004-05 (Malaysia and Denmark) that were considered uncommon in pigs. Overall, this study indicates that IAV is a very common agent in respiratory disease outbreaks in Spanish pig farms. The genetic diversity of this virus is continuously expanding with clear changes in the predominant subtypes and lineages in relatively short periods of time. The current genotyping scheme has to be enlarged to include the new genotypes that could be found in the future.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  7. Smaraki N, Jogi HR, Kamothi DJ, Savsani HH
    Arch Microbiol, 2024 Apr 09;206(5):210.
    PMID: 38592503 DOI: 10.1007/s00203-024-03932-6
    Lumpy skin disease (LSD) is a highly infectious and economically devastating viral disease of cattle. It is caused by Lumpy Skin Disease Virus (LSDV) belonging to the genus Capripoxvirus and family Poxviridae. The origin of lumpy skin disease has been traced to Zambia, (an African nation) in Southern part during the year 1929. The first reported case of LSD besides Africa was from Israel, a Middle Eastern nation, thus proving inter-continental spread. Subsequently, the disease entered Middle East, Eastern Europe and Asia with numerous outbreaks in the recent years. LSD has emerged as a significant concern in the Indian sub-continent, due to outbreaks reported in countries such as Bangladesh, India, China in 2019. In the following years, other South and East Asian countries like Taipei, Nepal, Sri Lanka, Myanmar, Bhutan, Vietnam, Hong Kong, Thailand, Malaysia, Laos, Cambodia, Pakistan, Indonesia and Singapore also faced severe outbreaks. At present, LSD is considered to be an emerging disease in the Indian sub-continent due to the recent status of disease. Considering the global scenario, LSDV is changing its transmission dynamics as evidenced by a shift in its epidemiology. As a result of high morbidity and mortality rate among cattle, the current outbreaks have been a major cause of socio-economic catastrophe. This contagious viral disease has eminent repercussions as the estimated monetary damage incurred is quite high. Despite having networked surveillance and comprehensive databases, the recurring outbreaks have raised major concern among researchers. Therefore, this review offers brief insights into the emergence of LSDV by amalgamating the newest literature related to its biology, transmission, clinico-pathology, epidemiology, prevention strategies, and economic consequences. Additionally, we have also provided the epidemiological insights of the recent outbreaks with detailed state wise studies.
    Matched MeSH terms: Disease Outbreaks/veterinary
  8. Sims LD
    Avian Dis, 2007 Mar;51(1 Suppl):174-81.
    PMID: 17494550
    Numerous lessons have been learned so far in controlling H5N1 avian influenza in Asia. Early detection of incursions of virus prevented establishment of the disease in several countries, notably Japan, South Korea, and Malaysia. In countries where detection of early cases was delayed, infection is endemic and has been for three or more years. Control measures implemented in these countries need to reflect this finding. Vaccination will continue to be one of the key measures used in these endemically infected countries. Used alone, vaccination will not result in elimination of H5N1 viruses from a country, but, if used correctly, it will markedly reduce the prevalence of and susceptibility to infection. Vaccination has already played a valuable role in reducing the adverse effects of H5N1 viruses. Mass culling also reduces the level of infection in infected areas. However, the long-term benefits are limited in endemically infected countries owing to the high probability of reinfection on restocking unless other measures are used in parallel. Full epidemiological studies have not been conducted in many infected countries. Nevertheless, it is recognized that the number of clinical cases does not truly reflect the levels of infection. Domestic ducks and large live poultry markets have played a key role in the persistence of infection, because they can be infected silently. In tackling this disease, countries should adopt integrated control programs using the combination of measures best suited to the local environment. All surveillance data should be shared, both positive and negative, and should include information on cases of infection and disease. Socioeconomic and ecological implications of all control measures should be assessed before implementation, especially the impact on the rural poor.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  9. Ramanoon SZ, Robertson ID, Edwards J, Hassan L, Isa KM
    Trop Anim Health Prod, 2013 Feb;45(2):373-7.
    PMID: 22826115 DOI: 10.1007/s11250-012-0226-x
    This is a retrospective study of the outbreaks of foot-and-mouth disease (FMD) in Peninsular Malaysia between 2001 and May 2007. In total, 270 outbreaks of FMD were recorded. Serotype O virus (89.95 %) and serotype A (7.7 %) had caused the outbreaks. Significant differences on the occurrence of FMD were found between the years (t = 5.73, P = 0.000, df = 11), months (t = 4.7, P = 0.000, df = 11), monsoon season (t = 2.63, P = 0.025, df = 10) and states (t = 4.84, P = 0.001, df = 10). A peak of outbreaks observed in 2003 could be due to increased animal movement and the other peak in 2006 could be due to a compromised FMD control activities due to activities on the eradication of highly pathogenic avian influenza. Cattle (86 % of outbreaks) suffered the most. However, no difference in disease occurrence between species was observed. The populations of cattle (r = 0.672, P = 0.023) and sheep (r = 0.678, P = 0.022) were significantly correlated with occurrence of FMD. Movement of animals (66 % of outbreaks) was the main source for outbreaks. A combination of control measures were implemented during outbreaks. In conclusion, the findings of this study show that FMD is endemic in Peninsular Malaysia, and information gained could be used to improve the existing control strategy.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  10. Pham TH, Rahaman NYA, Lila MAM, Lai HLT, Nguyen LT, Van Nguyen G, et al.
    BMC Vet Res, 2021 Mar 08;17(1):115.
    PMID: 33685458 DOI: 10.1186/s12917-021-02777-1
    BACKGROUND: After a decade of silence, an outbreak of the contagious and Asian endemic disease, goat pox re-emerged in North Vietnam affecting more than 1800 heads with a mortality rate of 6.5%. The inevitable impact of goat pox on hide quality, breeding, chevon and milk production has resulted in a significant economic losses to the developing goat industry of Vietnam. In the act of establishing an effective control of this devastating disease, tracing the source of re-emergence via a phylogenetic study was carried out to reveal their genetic relatedness. Either skin scab or papule from the six affected provinces were collected, cultured into Vero cells followed by restricted enzyme digestion of targeted P32 gene DNA encoding. The P32 gene was then cloned and transformed into E.coli competent cells for further sequencing.

    RESULTS: The isolated sequence is deposited into GenBank under Accession No. MN317561/VNUAGTP1. The phylogenetic tree revealed high similarity of nucleotide and amino acid sequences to references goat pox strains accounting for 99.6 and 99.3, respectively. The Vietnamese strain is clustered together with currently circulating goat pox virus in China, India and Pakistan which suggested the origin of South China.

    CONCLUSIONS: This Vietnam isolate is clustered together with other Asian goat pox strains indicating the dissemination of a common goat pox virus within this continent.

    Matched MeSH terms: Disease Outbreaks/veterinary
  11. Ozawa Y, Ong BL, An SH
    Rev. - Off. Int. Epizoot., 2001 Aug;20(2):605-13.
    PMID: 11548530
    Traceback systems in most countries of Asia are not well developed, as indicated by responses to a questionnaire by veterinary officials in thirteen countries. Marking of animals for traceback is practised only in a limited number of countries in specific areas or zones and for specific purposes only. In Malaysia, traceback has been undertaken by marking farm code tattoos on pigs. This enables the identification of the farm of origin of pigs found to be infected by Nipah virus in sero-surveillance programmes. The origin of the foot and mouth disease (FMD) virus that surfaced in the Republic of Korea in March 2000 was investigated through several epidemiological studies of suspected sources of contamination such as imported hay, yellow sand, milk collection trucks and feed delivery trucks. None of these studies gave results that indicated the origin of the FMD virus. The origin of the FMD virus that was recorded in Japan in March 2000 was also investigated in epidemiological studies; in this case, imported wheat straw was incriminated as the most likely source of infection. Comparative studies of the pathogenicities of FMD (type O) viruses isolated in Taipei China, the Republic of Korea and Japan, suggest that these viruses might have originated as vaccine strains used in a third country.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  12. Montrey RD, Huxsoll DL, Hildebrandt PK, Booth BW, Arimbalam S
    Lab. Anim. Sci., 1980 Aug;30(4 Pt 1):694-7.
    PMID: 7421117
    An epizootic of measles occurred in a group of 31 silvered leaf-monkeys (Presbytis cristatus) that had been in captivity for 4-12 months. Twenty-four of the monkeys exhibited a maculopapular rash that persisted for 6-9 days. A serous to mucopurulent nasal discharge and conjunctivitis were seen in some animals. Eight monkeys died during the epizootic; however, their deaths could not be directly attributed to measles. Serum samples from the surviving monkeys collected 1-2 months prior to, and 5 weeks after, the epizootic were examined by the complement-fixation and hemagglutination-inhibition tests for antibodies to measles virus. The preepizootic complement-fixation titers were all less than 1:4 and hemagglutination-inhibition titers, less than 1:10. The postepizootic complement-fixation titers in 21 of 23 surviving monkeys ranged from 1:8 to 1:128, and hemagglutination-inhibition titers in 22 of 23 monkeys ranged from 1:40 to 1:80 or greater.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  13. Molouki A, Mehrabadi MHF, Bashashati M, Akhijahani MM, Lim SHE, Hajloo SA
    Trop Anim Health Prod, 2019 Jun;51(5):1247-1252.
    PMID: 30689157 DOI: 10.1007/s11250-019-01817-1
    BACKGROUND: Based on our previous work, it was discovered that some Newcastle disease virus (NDV) isolates from backyard poultry between 2011 and 2013 in Iran formed a new separate cluster when phylogenetic analysis based on the complete F gene sequence was carried out. The novel cluster was designated subgenotype VII(L) and published.

    AIM: In the current study, for further validation, we initiated a comprehensive epidemiological study to identify the dominant NDV genotype(s) circulating within the country. Collection of samples was executed between October 2017 and February 2018 from 108 commercial broiler farms which reported clinical signs of respiratory disease in their broilers.

    RESULT: We report that 38 of the farms (> 35%) tested positive for NDV. The complete F gene sequences of seven of the isolates are shown as representative sequences in this study. According to the phylogenetic tree constructed, the recent broiler farm isolates clustered into the newly designated cluster VII(L) together with the older Iranian backyard poultry isolates in our previous work. All the sequences shared the same virulence-associated F cleavage site of 112RRQKR↓F117.

    CONCLUSION: Our phylogenetic analysis suggested that the NDV subgenotype VII(L) may have been derived from subgenotype VIId, and contrary to popular belief, subgenotype VIId may not be the dominant subgenotype in Iran. Tracking of the subgenotype on BLAST suggested that the NDV subgenotype VII(L), although previously unidentified, may have been circulating in this region as an endemic virus for at least a decade. Other NDV genotypes, however, have also been reported in Iran in recent years. Hence, ongoing study is aimed at determining the exact dominant NDV genotypes and subgenotypes in the country. This will be crucial in effective mitigation of outbreaks in Iranian broiler farms.

    Matched MeSH terms: Disease Outbreaks/veterinary
  14. Lat-Lat H, Hassan L, Sani RA, Sheikh-Omar AR, Hishamfariz M, Ng V
    Trop Biomed, 2007 Jun;24(1):77-81.
    PMID: 17568380 MyJurnal
    This paper presents investigation of lungworm disease outbreaks that is based on retrospective examination of cases recorded between 1994 and 2000 on a government beef cattle breeding centre in the state of Pahang, peninsular Malaysia. The breed of cattle on the centre was Nelore and the mean population over a 7-year period (from 1994 to 2000) was 1612. All animals were allowed to graze on pasture and mixed grazing was practiced on the farm. The routine de-worming programme was performed using levamisole and ivermectin from 1994 to 1998 and abamectin in 1999 and 2000 on 1 to 3-month-old calves and an annual dose given to the adult cattle. Nelore was introduced into the farm in 1991, three years before the first outbreak from Brazil where Dictyocaulus viviparus infection had been reported. No lungworm infection had been observed in the farm prior to the animal introduction. Within the 7-year period, 36 fatalities occurred and the annual mortality rate due to lungworm infection was 0.31%. The highest rate was recorded in 1997. Among the total 36 deaths, about 75% of deaths occurred in calves aged between 6 months and 12 months, 67% were males and 33% were female cattle. The highest number of deaths (19%) occurred in the month of November. In conclusion, D. viviparus infection may have been introduced into a tropical climate along with consignments of cattle from lungworm endemic areas resulting in fatal disease outbreaks for a few years following the animal's initial introduction.
    Matched MeSH terms: Disease Outbreaks/veterinary
  15. Landman WJ, Schrier CC
    Tijdschr Diergeneeskd, 2004 Dec 1;129(23):782-96.
    PMID: 15624878
    Avian influenza viruses are highly infectious micro-organisms that primarily affect birds. Nevertheless, they have also been isolated from a number of mammals, including humans. Avian influenza virus can cause large economic losses to the poultry industry because of its high mortality. Although there are pathogenic variants with a low virulence and which generally cause only mild, if any, clinical symptoms, the subtypes H5 and H7 can mutate from a low to a highly virulent (pathogenic) virus and should be taken into consideration in eradication strategies. The primary source of infection for commercial poultry is direct and indirect contact with wild birds, with waterfowl forming a natural reservoir of the virus. Live-poultry markets, exotic birds, and ostriches also play a significant role in the epidemiology of avian influenza. The secondary transmission (i.e., between poultry farms) of avian influenza virus is attributed primarily to fomites and people. Airborne transmission is also important, and the virus can be spread by aerosol in humans. Diagnostic tests detect viral proteins and genes. Virus-specific antibodies can be traced by serological tests, with virus isolation and identification being complementary procedures. The number of outbreaks of avian influenza seems to be increasing - over the last 5 years outbreaks have been reported in Italy, Hong Kong, Chile, the Netherlands, South Korea, Vietnam, Japan, Thailand, Cambodia, Indonesia, Laos, China, Pakistan, United States of America, Canada, South Africa, and Malaysia. Moreover, a growing number of human cases of avian influenza, in some cases fatal, have paralleled the outbreaks in commercial poultry. There is great concern about the possibility that a new virus subtype with pandemic potential could emerge from these outbreaks. From the perspective of human health, it is essential to eradicate the virus from poultry; however, the large number of small-holdings with poultry, the lack of control experience and resources, and the international scale of transmission and infection make rapid control and long-term prevention of recurrence extremely difficult. In the Western world, the renewed interest in free-range housing carries a threat for future outbreaks. The growing ethical objections to the largescale culling of birds require a different approach to the eradication of avian influenza.
    Matched MeSH terms: Disease Outbreaks/veterinary
  16. Kianizadeh M, Aini I, Omar AR, Yusoff K, Sahrabadi M, Kargar R
    Acta Virol., 2002;46(4):247-51.
    PMID: 12693862
    Nine Newcastle disease virus (NDV) isolates from Newcastle disease (ND) outbreaks in different regions of Iran were characterized at molecular level. Sequence analysis revealed that the isolates shared two pairs of arginine and a phenylalanine at the N-terminus of the fusion (F) protein cleavage site similarly to other velogenic isolates of NDV characterized earlier. Eight of the nine isolates had the same amino acid sequence as VOL95, a Russian NDV isolate from 1995. However, one isolate, MK13 showed 5 amino acid substitutions, of which 3 have been reported for other velogenic NDV isolates. These results suggest that the origin of the outbreaks of ND in different parts of Iran in 1995-1998 is VOL95.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  17. Jaganathan S, Ooi PT, Phang LY, Allaudin ZN, Yip LS, Choo PY, et al.
    BMC Vet Res, 2015;11:219.
    PMID: 26293577 DOI: 10.1186/s12917-015-0537-z
    Newcastle disease virus remains a constant threat in commercial poultry farms despite intensive vaccination programs. Outbreaks attributed to ND can escalate and spread across farms and states contributing to major economic loss in poultry farms.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  18. Imada T, Abdul Rahman MA, Kashiwazaki Y, Tanimura N, Syed Hassan S, Jamaluddin A
    J Vet Med Sci, 2004 Jan;66(1):81-3.
    PMID: 14960818
    Eight clones of monoclonal antibodies (Mabs) to Nipah virus (NV) were produced against formalin-inactivated NV antigens. They reacted positive by indirect immunofluorescent antibody test, and one of them also demonstrated virus neutralizing activity. They were classified into six different types based on their biological properties. These Mabs will be useful for immunodiagnosis of NV infections in animals and further research studies involving the genomes and proteins of NV.
    Matched MeSH terms: Disease Outbreaks/veterinary
  19. Homonnay ZG, Kovács EW, Bányai K, Albert M, Fehér E, Mató T, et al.
    Avian Pathol, 2014;43(6):552-60.
    PMID: 25299764 DOI: 10.1080/03079457.2014.973832
    A neurological disease of young Pekin ducks characterized by ataxia, lameness, and paralysis was observed at several duck farms in Malaysia in 2012. Gross pathological lesions were absent or inconsistent in most of the cases, but severe and consistent microscopic lesions were found in the brain and spinal cord, characterized by non-purulent panencephalomyelitis. Several virus isolates were obtained in embryonated duck eggs and in cell cultures (Vero and DF-1) inoculated with the brain homogenates of affected ducks. After exclusion of other viruses, the isolates were identified as a flavivirus by flavivirus-specific reverse transcription-polymerase chain reaction (RT-PCR) assays. Inoculation of 2-week-old Pekin ducks with a flavivirus isolate by the subcutaneous or intramuscular route resulted in typical clinical signs and histological lesions in the brain and spinal cord. The inoculated virus was detected by RT-PCR from organ samples of ducks with clinical signs and histological lesions. With a few days delay, the disease was also observed among co-mingled contact control birds. Phylogenetic analysis of NS5 and E gene sequences proved that the isolates were representatives of a novel phylogenetic group within clade XI (Ntaya virus group) of the Flavivirus genus. This Malaysian Duck Tembusu Virus (DTMUV), named Perak virus, has moderate genomic RNA sequence similarity to a related DTMUV identified in China. In our experiment the Malaysian strain of DTMUV could be transmitted in the absence of mosquito vectors. These findings may have implications for the control and prevention of this emerging group of flaviviruses.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  20. Hayashi M, Murakami T, Kuroda Y, Takai H, Ide H, Awang A, et al.
    Can. J. Vet. Res., 2016 Jul;80(3):189-96.
    PMID: 27408331
    Rotavirus B (RVB) infection in cattle is poorly understood. The objective of this study was to describe the epidemiological features of repeated outbreaks of epidemic diarrhea due to RVB infection in adult cattle on a large dairy farm complex in Japan. In October 2002, approximately 550 adult cows and approximately 450 in February 2005 had acute watery diarrhea at several farms on the complex. Four months before the first outbreak, RVB antibody-positive rates at subsequently affected farms were significantly lower than at non-affected farms (30% to 32% versus 61% to 67%). During the acute phase of both outbreaks, RVB antibody-positive rates in diarrheal cows tested were as low as 15% to 26%. Most of the farms affected in the second outbreak were also involved in the first outbreak. Some adult cows with RVB diarrhea in the first outbreak showed not only RVB seroresponse, but also RVB shedding in the second outbreak, although none of these cows developed diarrhea. Nucleotide sequences of the VP7 and VP4 genes revealed a close relationship between RVB strains in both outbreaks. Taken together, these results indicate that outbreaks of epidemic RVB diarrhea in adult cows might be influenced by herd immunity and could occur repeatedly at the same farms over several years. To our knowledge, this is the first report on repeated RVB infections in the same cattle.
    Matched MeSH terms: Disease Outbreaks/veterinary*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links