Displaying all 2 publications

Abstract:
Sort:
  1. Sabra R, Billa N, Roberts CJ
    Int J Pharm, 2019 Dec 15;572:118775.
    PMID: 31678385 DOI: 10.1016/j.ijpharm.2019.118775
    In the present study, we successfully developed a cetuximab-conjugated modified citrus pectin-chitosan nanoparticles for targeted delivery of curcumin (Cet-MCPCNPs) for the treatment of colorectal cancer. In vitro analyses revealed that nanoparticles were spherical with size of 249.33 ± 5.15 nm, a decent encapsulation efficiency (68.43 ± 2.4%) and a 'smart' drug release profile. 61.37 ± 0.70% of cetuximab was adsorbed to the surface of the nanoparticles. Cellular uptake studies displayed enhanced internalization of Cet-MCPCNPs in Caco-2 (EGFR +ve) cells, which ultimately resulted in a significant reduction in cancer cell propagation. The cell cycle analysis indicated that Cet- MCPCNPs induced cell death in enhanced percentage of Caco-2 cells by undergoing cell cycle arrest in the G2/M phase. These data suggest that Cet-MCPCNPs represent a new and promising targeting approach for the treatment of colorectal cancer.
    Matched MeSH terms: Drug Liberation/physiology
  2. Ebadi M, Bullo S, Buskara K, Hussein MZ, Fakurazi S, Pastorin G
    Sci Rep, 2020 Dec 09;10(1):21521.
    PMID: 33298980 DOI: 10.1038/s41598-020-76504-5
    The use of nanocarriers composed of polyethylene glycol- and polyvinyl alcohol-coated vesicles encapsulating active molecules in place of conventional chemotherapy drugs can reduce many of the chemotherapy-associated challenges because of the increased drug concentration at the diseased area in the body. The present study investigated the structure and magnetic properties of iron oxide nanoparticles in the presence of polyvinyl alcohol and polyethylene glycol as the basic surface coating agents. We used superparamagnetic iron oxide nanoparticles (FNPs) as the core and studied their effectiveness when two polymers, namely polyvinyl alcohol (PVA) and polyethylene glycol (PEG), were used as the coating agents together with magnesium-aluminum-layered double hydroxide (MLDH) as the nanocarrier. In addition, the anticancer drug sorafenib (SO), was loaded on MLDH and coated onto the surface of the nanoparticles, to best exploit this nano-drug delivery system for biomedical applications. Samples were prepared by the co-precipitation method, and the resulting formation of the nanoparticles was confirmed by X-ray, FTIR, TEM, SEM, DLS, HPLC, UV-Vis, TGA and VSM. The X-ray diffraction results indicated that all the as-synthesized samples contained highly crystalline and pure Fe3O4. Transmission electron microscopy analysis showed that the shape of FPEGSO-MLDH nanoparticles was generally spherical, with a mean diameter of 17 nm, compared to 19 nm for FPVASO-MLDH. Fourier transform infrared spectroscopy confirmed the presence of nanocarriers with polymer-coating on the surface of iron oxide nanoparticles and the existence of loaded active drug consisting of sorafenib. Thermogravimetric analyses demonstrated the thermal stability of the nanoparticles, which displayed enhanced anticancer effect after coating. Vibrating sample magnetometer (VSM) curves of both produced samples showed superparamagnetic behavior with the high saturation magnetization of 57 emu/g for FPEGSO-MLDH and 49 emu/g for FPVASO-MLDH. The scanning electron microscopy (SEM) images showed a narrow size distribution of both final samples. The SO drug loading and the release behavior from FPEGSO-MLDH and FPVASO-MLDH were assessed by ultraviolet-visible spectroscopy. This evaluation showed around 85% drug release within 72 h, while 74% of sorafenib was released in phosphate buffer solution at pH 4.8. The release profiles of sorafenib from the two designed samples were found to be sustained according to pseudo-second-order kinetics. The cytotoxicity studies confirmed the anti-cancer activity of the coated nanoparticles loaded with SO against liver cancer cells, HepG2. Conversely, the drug delivery system was less toxic than the pure drug towards fibroblast-type 3T3 cells.
    Matched MeSH terms: Drug Liberation/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links