This prospective study aimed to determine the extent of contamination of fentanyl solutions used for central neuraxial injection by wiping the neck of the ampoules with 70% isopropyl alcohol swabs (Kendall) before breaking open the ampoules and aspiration of fentanyl solutions using a 5 microm Filter Straw (B. Braun). In Group A, fifty fentanyl ampoules were wiped with 70% isopropyl alcohol swab prior to opening and the contents were aspirated immediately using a 21G needle and a 5 microm filter straw for culture. The same steps were repeated on the remaining solutions after two hours. In Group B, all the above steps were repeated but without wiping the ampoules with 70% isopropyl alcohol swabs. None of the samples from the wiped ampoules or aspiration using filter straw grew microorganisms. Six percent of the samples from unwiped group grew microorganisms when fentanyl were aspirated using a 21G needle and the contamination increased to 16% when repeated after two hours. Wiping the outsides of the fentanyl ampoules with 70% isopropyl alcohol swabs before opening or aspirating the contents using a 5 pm filter straw has been shown to be equally effective in avoiding bacterial contamination and should be practiced routinely when performing regional anaesthesia.
KEY WORDS: Fentanyl solution, Isopropyl alcohol swab, Filter straw, Contamination, Regional anaesthesia, Hospital Kuala Lumpur, Malaysia
Matched MeSH terms: Equipment Contamination/prevention & control
A closed enteral delivery system consisting of a cardboard tetrapack containing the sterile ready-to-use liquid feed and an independent sterile administration set, has been devised. We found bacterial contamination within 24 hours in this system in patients on ventilatory support in intensive care. This emphasises the need for meticulous care in handling enteral feeding systems to prevent environmental contamination.
Matched MeSH terms: Equipment Contamination/prevention & control
Medical devices are indispensable in the healthcare setting, ranging from diagnostic tools to therapeutic instruments, and even supporting equipment. However, these medical devices may be associated with life-threatening complications when exposed to blood. To date, medical device-related infections have been a major drawback causing high mortality. Device-induced hemolysis, albeit often neglected, results in negative impacts, including thrombotic events. Various strategies have been approached to overcome these issues, but the outcomes are yet to be considered as successful. Recently, superhydrophobic materials or coatings have been brought to attention in various fields. Superhydrophobic surfaces are proposed to be ideal blood-compatible biomaterials attributed to their beneficial characteristics. Reports have substantiated the blood repellence of a superhydrophobic surface, which helps to prevent damage on blood cells upon cell-surface interaction, thereby alleviating subsequent complications. The anti-biofouling effect of superhydrophobic surfaces is also desired in medical devices as it resists the adhesion of organic substances, such as blood cells and microorganisms. In this review, we will focus on the discussion about the potential contribution of superhydrophobic surfaces on enhancing the hemocompatibility of blood-contacting medical devices.
Acanthamoeba cysts are highly resistant to contact lens disinfecting solutions. Acanthamoeba cyst wall is partially made of 1,4 β-glucan (i.e., cellulose) and other complex polysaccharides making it a hardy shell that protects the resident amoeba. Here, we hypothesize that targeting the cyst wall structure in addition to antiamoebic compound would improve the efficacy of marketed contact lens disinfecting solutions. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents abolished viability of Acanthamoeba castellanii cysts and trophozoites. When tested alone, none of the agents nor contact lens disinfecting solutions completely destroyed A. castellanii cysts and trophozoites. The absence of cyst wall-degrading enzymes in marketed contact lens disinfecting solutions render them ineffective against Acanthamoeba cysts. It is concluded that the addition of cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy in decreasing the incidence of Acanthamoeba effectively.
Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants.
Acanthamoeba castellanii is the causative agent of blinding keratitis. Though reported in non-contact lens wearers, it is most frequently associated with improper use of contact lens. For contact lens wearers, amoebae attachment to the lens is a critical first step, followed by amoebae binding to the corneal epithelial cells during extended lens wear. Acanthamoeba attachment to surfaces (biological or inert) and migration is an active process and occurs during the trophozoite stage. Thus retaining amoebae in the cyst stage (dormant form) offers an added preventative measure in impeding parasite traversal from the contact lens onto the cornea. Here, we showed that as low as 3% DMSO, abolished A. castellanii excystation. Based on the findings, it is proposed that DMSO should be included in the contact lens disinfectants as an added preventative strategy against contracting Acanthamoeba keratitis.
Matched MeSH terms: Equipment Contamination/prevention & control