Displaying all 3 publications

Abstract:
Sort:
  1. Al-Thiabat MG, Gazzali AM, Mohtar N, Murugaiyah V, Kamarulzaman EE, Yap BK, et al.
    Molecules, 2021 Aug 31;26(17).
    PMID: 34500740 DOI: 10.3390/molecules26175304
    Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid (FA) to the FRα active site provides a basis for recognition of FRα. In this study, FA was conjugated to beta-cyclodextrin (βCD) and subjected to in silico analysis (molecular docking and molecular dynamics (MD) simulation (100 ns)) to investigate the affinity and stability for the conjugated system compared to unconjugated and apo systems (ligand free). Docking studies revealed that the conjugated FA bound into the active site of FRα with a docking score (free binding energy < -15 kcal/mol), with a similar binding pose to that of unconjugated FA. Subsequent analyses from molecular dynamics (MD) simulations, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) demonstrated that FA and FA-βCDs created more dynamically stable systems with FRα than the apo-FRα system. All systems reached equilibrium with stable RMSD values ranging from 1.9-2.4 Å and the average residual fluctuation values of the FRα backbone atoms for all residues (except for terminal residues ARG8, THR9, THR214, and LEU215) were less than 2.1 Å with a consistent Rg value of around 16.8 Å throughout the MD simulation time (0-100 ns). The conjugation with βCD improved the stability and decreased the mobility of all the residues (except residues 149-151) compared to FA-FRα and apo-FRα systems. Further analysis of H-bonds, binding free energy (MM-PBSA), and per residue decomposition energy revealed that besides APS81, residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were shown to have more favourable energy contributions in the holo systems than in the apo-FRα system, and these residues might have a direct role in increasing the stability of holo systems.
    Matched MeSH terms: Folate Receptor 1/metabolism
  2. Boidin L, Moinard M, Moussaron A, Merlier M, Moralès O, Grolez GP, et al.
    J Control Release, 2024 Jul;371:351-370.
    PMID: 38789088 DOI: 10.1016/j.jconrel.2024.05.033
    Ovarian cancer (OC) is one of the most lethal cancers among women. Frequent recurrence in the peritoneum due to the presence of microscopic tumor residues justifies the development of new therapies. Indeed, our main objective is to develop a targeted photodynamic therapy (PDT) treatment of peritoneal carcinomatosis from OC to improve the life expectancy of cancer patients. Herein, we propose a targeted-PDT using a vectorized photosensitizer (PS) coupled with a newly folic acid analog (FAA), named PSFAA, in order to target folate receptor alpha (FRα) overexpressed on peritoneal metastasis. This PSFAA was the result of the coupling of pyropheophorbide-a (Pyro-a), as the PS, to a newly synthesized FAA via a polyethylene glycol (PEG) spacer. The selectivity and the PDT efficacy of PSFAA was evaluated on two human OC cell lines overexpressing FRα compared to fibrosarcoma cells underexpressing FRα. Final PSFAA, including the synthesis of a newly FAA and its conjugation to Pyro-a, was obtained after 10 synthesis steps, with an overall yield of 19%. Photophysical properties of PSFAA in EtOH were performed and showed similarity with those of free Pyro-a, such as the fluorescence and singlet oxygen quantum yields (Φf = 0.39 and ΦΔ = 0.53 for free Pyro-a, and Φf = 0.26 and ΦΔ = 0.41 for PSFAA). Any toxicity of PSFAA was noticed. After light illumination, a dose-dependent effect on PS concentration and light dose was shown. Furthermore, a PDT efficacy of PSFAA on OC cell secretome was detected inducing a decrease of a pro-inflammatory cytokine secretion (IL-6). This new PSFAA has shown promising biological properties highlighting the selectivity of the therapy opening new perspectives in the treatment of a cancer in a therapeutic impasse.
    Matched MeSH terms: Folate Receptor 1/metabolism
  3. Ameirika, Sha HX, Hwang JS
    Toxicon, 2017 Jul;133:153-161.
    PMID: 28478056 DOI: 10.1016/j.toxicon.2017.05.007
    Hydra actinoporin-like toxin-1 (HALT-1) is a 20.8 kDa pore-forming toxin isolated from Hydra magnipapillata. HALT-1 shares structural similarity with actinoporins, a family that is well known for its haemolytic and cytolytic activity. However, the precise pore-forming mechanism of HALT-1 remains an open question since little is known about the specific target binding for HALT-1. For this reason, a comprehensive proteomic analysis was performed using affinity purification and SILAC-based mass spectrometry to identify potential protein-protein interactions between mammalian HeLa cell surface proteins and HALT-1. A total of 4 mammalian proteins was identified, of which only folate receptor alpha was further verified by ELISA. Our preliminary results highlight an alternative-binding mode of HALT-1 to the human plasma membrane. This is the first evidence showing that HALT-1, an actinoporin-like protein, binds to a membrane protein, the folate receptor alpha. This study would advance our understanding of the molecular basis of toxicity of pore-forming toxins and provide new insights in the production of more potent inhibitors for the toxin-membrane receptor interactions.
    Matched MeSH terms: Folate Receptor 1/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links