Displaying publications 1 - 20 of 155 in total

Abstract:
Sort:
  1. Kumar P, Pandey R, Sharma P, Dhar MS, A V, Uppili B, et al.
    Wellcome Open Res, 2020;5:184.
    PMID: 32995557 DOI: 10.12688/wellcomeopenres.16119.1
    Background: India first detected SARS-CoV-2, causal agent of COVID-19 in late January 2020, imported from Wuhan, China. From March 2020 onwards, the importation of cases from countries in the rest of the world followed by seeding of local transmission triggered further outbreaks in India. Methods: We used ARTIC protocol-based tiling amplicon sequencing of SARS-CoV-2 (n=104) from different states of India using a combination of MinION and MinIT sequencing from Oxford Nanopore Technology to understand how introduction and local transmission occurred. Results: The analyses revealed multiple introductions of SARS-CoV-2 genomes, including the A2a cluster from Europe and the USA, A3 cluster from Middle East and A4 cluster (haplotype redefined) from Southeast Asia (Indonesia, Thailand and Malaysia) and Central Asia (Kyrgyzstan). The local transmission and persistence of genomes A4, A2a and A3 was also observed in the studied locations. The most prevalent genomes with patterns of variance (confined in a cluster) remain unclassified, and are here proposed as A4-clade based on its divergence within the A cluster. Conclusions: The viral haplotypes may link their persistence to geo-climatic conditions and host response. Multipronged strategies including molecular surveillance based on real-time viral genomic data is of paramount importance for a timely management of the pandemic.
    Matched MeSH terms: Genome, Viral
  2. He C, Ding N, Li J, Li Y
    Wei Sheng Wu Xue Bao, 2002 Aug;42(4):436-41.
    PMID: 12557549
    A Chicken anemia virus has been isolated from a chicken flock in Harbin of China. The genome of the ivrus was cloned through polymerase chain reaction(PCR) and sequence of the genome was analyzed. The cycle genome is made of 2298 base pairs including three overlapping open reading frames(vp1, vp2, vp3) and a regulative region. Comparing sequence of the genome through BLAST in GenBank, this sequence exhibits 96.9% identity with other genome of CA Vs and least. Multiple alignment of this genome of this virus, 26p4, strain isolated in Germany, strain isolated in Malaysia and Cux-1 found that this sequence exhibits 98.2% (42/2298), 98.2% (42/2298), 96.9% (72/2298) and 97.5% (60/2319) identify with them, respectively. A new CAV strain was isolated and it has better identify with CAV isolated in Europe countries than is Asia country Malaysia. Multiple alignment of VP1, VP2, VP3 of 26p4, strain isolated in Germany, strain isolated in Malaysia, Cux-1 and strain isolated in Harbin of China found the VP2 the most conservative.
    Matched MeSH terms: Genome, Viral*
  3. Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H
    Viruses, 2020 07 26;12(8).
    PMID: 32722532 DOI: 10.3390/v12080803
    Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus-host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
    Matched MeSH terms: Genome, Viral*
  4. Mandary MB, Poh CL
    Viruses, 2018 06 12;10(6).
    PMID: 29895721 DOI: 10.3390/v10060320
    Enterovirus 71 (EV-A71) is a major etiological agent of hand, foot and mouth disease (HFMD) that mainly affects young children less than five years old. The onset of severe HFMD is due to neurological complications bringing about acute flaccid paralysis and pulmonary oedema. In this review, we address how genetic events such as recombination and spontaneous mutations could change the genomic organization of EV-A71, leading to an impact on viral virulence. An understanding of the recombination mechanism of the poliovirus and non-polio enteroviruses will provide further evidence of the emergence of novel strains responsible for fatal HFMD outbreaks. We aim to see if the virulence of EV-A71 is contributed solely by the presence of fatal strains or is due to the co-operation of quasispecies within a viral population. The phenomenon of quasispecies within the poliovirus is discussed to reflect viral fitness, virulence and its implications for EV-A71. Ultimately, this review gives an insight into the evolution patterns of EV-A71 by looking into its recombination history and how spontaneous mutations would affect its virulence.
    Matched MeSH terms: Genome, Viral*
  5. Bentley K, Tee HK, Pearson A, Lowry K, Waugh S, Jones S, et al.
    Viruses, 2021 11 29;13(12).
    PMID: 34960659 DOI: 10.3390/v13122390
    Positive-strand RNA virus evolution is partly attributed to the process of recombination. Although common between closely genetically related viruses, such as within species of the Enterovirus genus of the Picornaviridae family, inter-species recombination is rarely observed in nature. Recent studies have shown recombination is a ubiquitous process, resulting in a wide range of recombinant genomes and progeny viruses. While not all recombinant genomes yield infectious progeny virus, their existence and continued evolution during replication have critical implications for the evolution of the virus population. In this study, we utilised an in vitro recombination assay to demonstrate inter-species recombination events between viruses from four enterovirus species, A-D. We show that inter-species recombinant genomes are generated in vitro with polymerase template-switching events occurring within the virus polyprotein coding region. However, these genomes did not yield infectious progeny virus. Analysis and attempted recovery of a constructed recombinant cDNA revealed a restriction in positive-strand but not negative-strand RNA synthesis, indicating a significant block in replication. This study demonstrates the propensity for inter-species recombination at the genome level but suggests that significant sequence plasticity would be required in order to overcome blocks in the virus life cycle and allow for the production of infectious viruses.
    Matched MeSH terms: Genome, Viral
  6. Vasilakis N, Tesh RB, Popov VL, Widen SG, Wood TG, Forrester NL, et al.
    Viruses, 2019 05 23;11(5).
    PMID: 31126128 DOI: 10.3390/v11050471
    In recent years, it has become evident that a generational gap has developed in the community of arbovirus research. This apparent gap is due to the dis-investment of training for the next generation of arbovirologists, which threatens to derail the rich history of virus discovery, field epidemiology, and understanding of the richness of diversity that surrounds us. On the other hand, new technologies have resulted in an explosion of virus discovery that is constantly redefining the virosphere and the evolutionary relationships between viruses. This paradox presents new challenges that may have immediate and disastrous consequences for public health when yet to be discovered arboviruses emerge. In this review we endeavor to bridge this gap by providing a historical context for the work being conducted today and provide continuity between the generations. To this end, we will provide a narrative of the thrill of scientific discovery and excitement and the challenges lying ahead.
    Matched MeSH terms: Genome, Viral
  7. Kannan M, Ismail I, Bunawan H
    Viruses, 2018 09 13;10(9).
    PMID: 30217014 DOI: 10.3390/v10090492
    Maize dwarf mosaic virus (MDMV) is a serious maize pathogen, epidemic worldwide, and one of the most common virus diseases for monocotyledonous plants, causing up to 70% loss in corn yield globally since 1960. MDMV belongs to the genus Potyvirus (Potyviridae) and was first identified in 1964 in Illinois in corn and Johnsongrass. MDMV is a single stranded positive sense RNA virus and is transmitted in a non-persistent manner by several aphid species. MDMV is amongst the most important virus diseases in maize worldwide. This review will discuss its genome, transmission, symptomatology, diagnosis and management. Particular emphasis will be given to the current state of knowledge on the diagnosis and control of MDMV, due to its importance in reducing the impact of maize dwarf mosaic disease, to produce an enhanced quality and quantity of maize.
    Matched MeSH terms: Genome, Viral*
  8. Sadeghi M, Popov V, Guzman H, Phan TG, Vasilakis N, Tesh R, et al.
    Virus Res, 2017 10 15;242:49-57.
    PMID: 28855097 DOI: 10.1016/j.virusres.2017.08.012
    Eleven viral isolates derived mostly in albopictus C6/36 cells from mosquito pools collected in Southeast Asia and the Americas between 1966 and 2014 contained particles with electron microscopy morphology typical of reoviruses. Metagenomics analysis yielded the near complete genomes of three novel reoviruses, Big Cypress orbivirus, Ninarumi virus, and High Island virus and a new tetravirus, Sarawak virus. Strains of previously characterized Sathuvarachi, Yunnan, Banna and Parry's Lagoon viruses (Reoviridae), Bontang virus (Mesoniviridae), and Culex theileri flavivirus (Flaviviridae) were also characterized. The availability of these mosquito virus genomes will facilitate their detection by metagenomics or PCR to better determine their geographic range, extent of host tropism, and possible association with arthropod or vertebrate disease.
    Matched MeSH terms: Genome, Viral
  9. Chakraborty S, Deb B, Barbhuiya PA, Uddin A
    Virus Res, 2019 04 02;263:129-138.
    PMID: 30664908 DOI: 10.1016/j.virusres.2019.01.011
    Codon usage bias (CUB) is the unequal usage of synonymous codons of an amino acid in which some codons are used more often than others and is widely used in understanding molecular biology, genetics, and functional regulation of gene expression. Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal disease in both humans and animals. NiV was first identified during an outbreak of a disease in Malaysia in 1998 and then occurred periodically since 2001 in India, Bangladesh, and the Philippines. We used bioinformatics tools to analyze the codon usage patterns in a genome-wide manner among 11 genomes of NiV as no work was reported yet. The compositional properties revealed that the overall GC and AT contents were 41.96 and 58.04%, respectively i.e. Nipah virus genes were AT-rich. Correlation analysis between overall nucleotide composition and its 3rd codon position suggested that both mutation pressure and natural selection might influence the CUB across Nipah genomes. Neutrality plot revealed natural selection might have played a major role while mutation pressure had a minor role in shaping the codon usage bias in NiV genomes.
    Matched MeSH terms: Genome, Viral*
  10. Chong HY, Leow CY, Abdul Majeed AB, Leow CH
    Virus Res, 2019 12;274:197770.
    PMID: 31626874 DOI: 10.1016/j.virusres.2019.197770
    Flaviviruses are group of single stranded RNA viruses that cause severe endemic infection and epidemics on a global scale. It presents a significant health impact worldwide and the viruses have the potential to emerge and outbreak in a non-endemic geographical region. Effective vaccines for prophylaxis are only available for several flaviviruses such as Yellow Fever virus, Tick-borne Encephalitis Virus, Dengue Virus and Japanese Encephalitis Virus and there is no antiflaviviral agent being marketed. This review discusses the flavivirus genome, replication cycle, epidemiology, clinical presentation and pathogenesis upon infection. Effective humoral response is critical to confer protective immunity against flaviviruses. Hence, we have also highlighted the immune responses elicited upon infection, various diagnostic facilities available for flaviviral disease and monoclonal antibodies available to date against flavivirus infection.
    Matched MeSH terms: Genome, Viral
  11. Li S, Zhang L, Wang Y, Wang S, Sun H, Su W, et al.
    Virus Res, 2013 Jan;171(1):238-41.
    PMID: 23116594 DOI: 10.1016/j.virusres.2012.10.019
    Duck Tembusu virus (TMUV) is a recently identified pathogenic flavivirus that causes severe egg drop and encephalitis in Chinese ducks and geese. It has been found to be most closely related to the mosquito-origin Tembusu virus and chicken Sitiawan virus reported in Malaysia. However, the ecological characteristics and the pathogenesis of duck TMUV are largely unknown. We report the construction of full-length cDNA clone of duck TMUV strain JXSP. The virus genome was reverse transcribed, amplified as seven overlapping fragments and successively ligated into the low copy number vector pWSK29 under the control of a T7 promoter. Transfection of BHK-21 cells with the transcribed RNA from the full-length cDNA clone resulted in production of highly infectious progeny virus. In vitro growth characteristics in BHK-21 cells and virulence in ducklings and BALB/c mice were similar for the rescued and parental viruses. This stable infectious cDNA clone will be a valuable tool for studying the genetic determinants of duck TMUV.
    Matched MeSH terms: Genome, Viral
  12. Ksiazek TG, Rota PA, Rollin PE
    Virus Res, 2011 Dec;162(1-2):173-83.
    PMID: 21963678 DOI: 10.1016/j.virusres.2011.09.026
    The emergence of Hendra and Nipah viruses in the 1990s has been followed by the further emergence of these viruses in the tropical Old World. The history and current knowledge of the disease, the viruses and their epidemiology is reviewed in this article. A historical aside summarizes the role that Dr. Brian W.J. Mahy played at critical junctures in the early stories of these viruses.
    Matched MeSH terms: Genome, Viral*
  13. Osman O, Fong MY, Devi S
    Virus Res, 2008 Jul;135(1):48-52.
    PMID: 18406488 DOI: 10.1016/j.virusres.2008.02.006
    In a previous study, we have reported the detection and isolation of dengue virus in Brunei (Osman, O., Fong, M.Y., Devi, S., 2007. A preliminary study of dengue infection in Brunei. JJID 60 (4), 205-208). DEN-2 was the predominant serotype followed by DEN-1. The full genomic sequences of 3 DEN-2 viruses isolated during the 2005-2006 dengue incident in Brunei were determined. Twenty-five primer sets were designed to amplify contiguous overlapping fragments of approximately 500-600 base pairs spanning the entire sequence of the viral genome. The amplified PCR products were sent for sequencing and their nucleotides and the deduced amino acids were determined. All three DEN-2 virus isolated were clustered in the Cosmopolitan genotype of the DEN-2 classification by Twiddy et al. This work constitutes the first complete genetic characterization of three Brunei DEN-2 virus strains.
    Matched MeSH terms: Genome, Viral*
  14. Etebari K, Filipović I, Rašić G, Devine GJ, Tsatsia H, Furlong MJ
    Virus Res, 2020 03;278:197864.
    PMID: 31945420 DOI: 10.1016/j.virusres.2020.197864
    Oryctes rhinoceros nudivirus (OrNV) has been an effective biocontrol agent against the insect pest Oryctes rhinoceros (Coleoptera: Scarabaeidae) for decades, but there is evidence that resistance could be evolving in some host populations. We detected OrNV infection in O. rhinoceros from Solomon Islands and used Oxford Nanopore Technologies (ONT) long-read sequencing to determine the full length of the virus genomic sequence isolated from an individual belonging to a mitochondrial lineage (CRB-G) that was previously reported as resistant to OrNV. The complete circular genome of the virus consisted of 125,917 nucleotides, 1.698 bp shorter than the originally-described full genome sequence of Ma07 strain from Malaysia. We found 130 out of 139 previously annotated ORFs (seven contained interrupted/non-coding sequences, two were identified as duplicated versions of the existing genes), as well as a putatively inverted regions containing four genes. These results demonstrate the usefulness of a long-read sequencing technology for resolving potential structural variations when describing new virus isolates. While the Solomon Islands isolate exhibited 99.41 % nucleotide sequence identity with the originally described strain, we found several genes, including a core gene (vlf-1), that contained multiple amino acid insertions and/or deletions as putative polymorphisms of large effect. Our complete annotated genome sequence of a newly found isolate in Solomon Islands provides a valuable resource to help elucidate the mechanisms that compromise the efficacy of OrNV as a biocontrol agent against the coconut rhinoceros beetle.
    Matched MeSH terms: Genome, Viral*
  15. Hasan MM, Das R, Rasheduzzaman M, Hussain MH, Muzahid NH, Salauddin A, et al.
    Virus Res, 2021 May;297:198390.
    PMID: 33737154 DOI: 10.1016/j.virusres.2021.198390
    Coronavirus Disease 2019 (COVID-19) warrants comprehensive investigations of publicly available Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genomes to gain new insight about their epidemiology, mutations, and pathogenesis. Nearly 0.4 million mutations have been identified so far among the ∼60,000 SARS-CoV-2 genomic sequences. In this study, we compared a total of 371 SARS-CoV-2 published whole genomes reported from different parts of Bangladesh with 467 sequences reported globally to understand the origin of viruses, possible patterns of mutations, and availability of unique mutations. Phylogenetic analyses indicated that SARS-CoV-2 viruses might have transmitted through infected travelers from European countries, and the GR clade was found as predominant in Bangladesh. Our analyses revealed 4604 mutations at the RNA level including 2862 missense mutations, 1192 synonymous mutations, 25 insertions and deletions and 525 other types of mutation. In line with the global trend, D614G mutation in spike glycoprotein was predominantly high (98 %) in Bangladeshi isolates. Interestingly, we found the average number of mutations in ORF1ab, S, ORF3a, M, and N were significantly higher (p < 0.001) for sequences containing the G614 variant compared to those having D614. Previously reported frequent mutations, such as R203K, D614G, G204R, P4715L and I300F at protein levels were also prevalent in Bangladeshi isolates. Additionally, 34 unique amino acid changes were revealed and categorized as originating from different cities. These analyses may increase our understanding of variations in SARS-CoV-2 virus genomes, circulating in Bangladesh and elsewhere.
    Matched MeSH terms: Genome, Viral*
  16. Ge F, Guo R, Liang Y, Chen Y, Shao H, Sung YY, et al.
    Virus Res, 2023 Oct 15;336:199226.
    PMID: 37739268 DOI: 10.1016/j.virusres.2023.199226
    Stutzerimonas stutzeri is an opportunistic pathogenic bacterium belonging to the Gammaproteobacteria, exhibiting wide distribution in the environment and playing significant ecological roles such as nitrogen fixation or pollutant degradation. Despite its ecological importance, only two S. stutzeri phages have been isolated to date. Here, a novel S. stutzeri phage, vB_PstS_ZQG1, was isolated from the surface seawater of Qingdao, China. Transmission electron microscopy analysis indicates that vB_PstS_ZQG1 has a morphology characterized by a long non-contractile tail. The genomic sequence of vB_PstS_ZQG1 contains a linear, double-strand 61,790-bp with the G+C content of 53.24% and encodes 90 putative open reading frames. Two auxiliary metabolic genes encoding TolA protein and nucleotide pyrophosphohydrolase were identified, which are likely involved in host adaptation and phage reproduction. Phylogenetic and comparative genomic analyses demonstrated that vB_PstS_ZQG1 exhibits low similarity with previously isolated phages or uncultured viruses (average nucleotide identity values range from 21.7 to 29.4), suggesting that it represents a novel viral genus by itself, here named as Fuevirus. Biogeographic analysis showed that vB_PstS_ZQG1 was only detected in epipelagic and mesopelagic zone with low abundance. In summary, our findings of the phage vB_PstS_ZQG1 will provide helpful insights for further research on the interactions between S. stutzeri phages and their hosts, and contribute to discovering unknown viral sequences in the metagenomic database.
    Matched MeSH terms: Genome, Viral
  17. Chen Y, Guo R, Liang Y, Luo L, Han Y, Wang H, et al.
    Virus Res, 2023 Sep;334:199183.
    PMID: 37499764 DOI: 10.1016/j.virusres.2023.199183
    Stutzerimonas stutzeri is an opportunistic pathogen widely distributed in the environment and displays diverse metabolic capabilities. In this study, a novel lytic S. stutzeri phage, named vB_PstM_ZRG1, was isolated from the seawater in the East China Sea (29°09'N, 123°39'E). vB_PstM_ZRG1 was stable at temperatures ranging from -20°C to 65°C and across a wide range of pH values from 3 to 10. The genome of vB_PstM_ZRG1 was determined to be a double-stranded DNA with a genome size of 52,767 bp, containing 78 putative open reading frames (ORFs). Three auxiliary metabolic genes encoded by phage vB_PstM_ZRG1 were predicted, including Toll/interleukin-1 receptor (TIR) domain, proline-alanine-alanine-arginine (PAAR) protein and SGNH (Ser-Gly-Asn-His) family hydrolase, especially TIR domain is not common in isolated phages. Phylogenic and network analysis showed that vB_PstM_ZRG1 has low similarity to other phage genomes in the GenBank and IMG/VR database, and might represent a novel viral genus, named Elithevirus. Additionally, the distribution map results indicated that vB_PstM_ZRG1 could infect both extreme colds- and warm-type hosts in the marine environment. In summary, our finding provided basic information for further research on the relationship between S. stutzeri and their phages, and expanded our understanding of genomic characteristics, phylogenetic diversity and distribution of Elithevirus.
    Matched MeSH terms: Genome, Viral
  18. Murulitharan K, Yusoff K, Omar AR, Molouki A
    Virus Genes, 2013 Jun;46(3):431-40.
    PMID: 23306943 DOI: 10.1007/s11262-012-0874-y
    Newcastle disease virus (NDV) strain AF2240 is a viscerotropic velogenic strain that is used as a vaccine challenge virus in Malaysia. The identification of the full length genome will be a crucial platform for further studies of this isolate. In this study, we fully sequenced the genome of a derivative of this strain named AF2240-I. The 15,192 nt long genome contains a 55-nt leader sequence at the 3' whereas the trailer region consists of 114 nt at the 5'. The intergenic sequences between the NP-P, P-M, M-F, F-HN, and HN-L genes comprise 1, 1, 1, 31, and 47 nt, respectively. The acknowledged cleavage site of fusion protein showed amino acid sequence of 112-R-R-Q-K-R-F-117, which corresponds to those of virulent NDV strains. Phylogenetic analysis of the whole virus genome shows that the strain AF2240-I belongs to genotype VIII and is more closely related to velogenic strains QH1, QH4, Fontana, Largo, and Italienas compared to other strains of NDV. Differences are noticed in the hemagglutinin-neuraminidase (HN) and matrix (M) gene between AF2240 and its derivative AF2240-I. This is the first report of a complete genome sequence of an NDV strain isolated in Malaysia.
    Matched MeSH terms: Genome, Viral*
  19. Chong YL, Ng KH
    Virus Genes, 2017 Dec;53(6):774-777.
    PMID: 28456924 DOI: 10.1007/s11262-017-1459-6
    Human bocavirus (HBoV) is a single-stranded DNA virus in Parvoviridae family, causing respiratory diseases in human. The recent identifications of genomic recombination among the four human bocavirus genotypes and related non-human primate bocaviruses have shed lights into the evolutionary processes underpinning the diversity of primate bocavirus. Among these reports, however, we found inconsistency and possible alternative interpretations of the recombination events. In this study, these recombination events were reviewed, and the related genome sequences were re-analysed, aiming to inform the research community of bocavirus with more consistent knowledge and comprehensive interpretations on the recombination history of primate bocavirus.
    Matched MeSH terms: Genome, Viral/genetics*
  20. Gan HM, Sieo CC, Tang SG, Omar AR, Ho YW
    Virol J, 2013;10:308.
    PMID: 24134834 DOI: 10.1186/1743-422X-10-308
    Bacteriophage EC1-UPM is an N4-like bacteriophage which specifically infects Escherichia coli O78:K80, an avian pathogenic strain that causes colibacillosis in poultry. The complete genome sequence of bacteriophage EC1-UPM was analysed and compared with other closely related N4-like phage groups to assess their genetic similarities and differences.
    Matched MeSH terms: Genome, Viral*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links