METHODS: We conducted a systematic review and individual patient meta-analysis, which we report according to the Preferred Reporting Items for Systematic Review and Meta-analyses of Individual Participant Data guidelines. PubMed and Embase were searched from inception to May 29, 2023, using the terms ((stroke) AND (randomised OR randomized) AND (tranexamic acid) AND (haemorrhage OR hemorrhage)). We included randomized trials comparing tranexamic acid with placebo in participants with primary intracerebral hemorrhage who had a spot sign and who had follow-up imaging within the required timeframe. Individual patient data were provided by each study and were integrated by the coordinating center. Data were pooled using a random-effects model. The primary endpoint was hematoma growth within 24 hours, defined as ≥33% relative or ≥6 mL absolute hematoma expansion compared with baseline, analyzed using mixed-effects-modified Poisson regression with robust standard errors, adjusted for baseline hematoma volume. Safety outcomes were mortality and major thromboembolic events within 90 days.
RESULTS: Of 197 studies identified, 3 were eligible, contributing 162 participants for the primary analysis (60 female and 102 male). Hematoma growth occurred in 36 of 74 (49%) participants treated with tranexamic acid, compared with 48 of 88 (55%) participants treated with placebo (adjusted risk ratio 0.86, 95% CI 0.84-0.89, p < 0.001). Adjusted median absolute hematoma growth was 1.60 mL (95% CI 0.77-2.43) lower with tranexamic acid vs placebo. No differences in functional outcome or safety were observed.
DISCUSSION: Tranexamic acid modestly reduced hematoma growth in patients with CT angiography spot signs treated within 4.5 hours of onset. Given the trials in the meta-analysis were individually neutral, these results require further validation before clinical application.
METHODS: We pooled individual patient data from randomized controlled trials registered in the Blood Pressure in Acute Stroke Collaboration. Time was defined as time form symptom onset plus the time (hour) to first achieve and subsequently maintain SBP at 120 to 140 mm Hg over 24 hours. The primary outcome was functional status measured by the modified Rankin Scale at 90 to 180 days. A generalized linear mixed models was used, with adjustment for covariables and trial as a random effect.
RESULTS: A total of 5761 patients (mean age, 64.0 [SD, 13.0], 2120 [36.8%] females) were included in analyses. Earlier SBP control was associated with better functional outcomes (modified Rankin Scale score, 3-6; odds ratio, 0.98 [95% CI, 0.97-0.99]) and a significant lower risk of hematoma expansion (0.98, 0.96-1.00). This association was stronger in patients with bigger baseline hematoma volume (>10 mL) compared with those with baseline hematoma volume ≤10 mL (0.006 for interaction). Earlier SBP control was not associated with cardiac or renal adverse events.
CONCLUSIONS: Our study confirms a clear time relation between early versus later SBP control (120-140 mm Hg) and outcomes in the one-third of patients with intracerebral hemorrhage who attained sustained SBP levels within this range. These data provide further support for the value of early recognition, rapid transport, and prompt initiation of treatment of patients with intracerebral hemorrhage.
METHODS: TICH-2 trial (Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage) was a randomized, placebo-controlled clinical trial recruiting acutely hospitalized participants with intracerebral hemorrhage within 8 hours after symptom onset. Local investigators randomized participants to 2 grams of intravenous tranexamic acid or matching placebo (1:1). All participants underwent computed tomography scan on admission and on day 2 (24±12 hours) after randomization. In this sub group analysis, we included all participants from the main trial population with imaging allowing adjudication of spot sign status.
RESULTS: Of the 2325 TICH-2 participants, 254 (10.9%) had imaging allowing for spot-sign adjudication. Of these participants, 64 (25.2%) were spot-sign positive. Median (interquartile range) time from symptom onset to administration of the intervention was 225.0 (169.0 to 310.0) minutes. The adjusted percent difference in absolute day-2 hematoma volume between participants allocated to tranexamic versus placebo was 3.7% (95% CI, -12.8% to 23.4%) for spot-sign positive and 1.7% (95% CI, -8.4% to 12.8%) for spot-sign negative participants (Pheterogenity=0.85). No difference was observed in significant hematoma progression (dichotomous composite outcome) between participants allocated to tranexamic versus placebo among spot-sign positive (odds ratio, 0.85 [95% CI, 0.29 to 2.46]) and negative (odds ratio, 0.77 [95% CI, 0.41 to 1.45]) participants (Pheterogenity=0.88).
CONCLUSIONS: Data from the TICH-2 trial do not support that admission spot sign status modifies the treatment effect of tranexamic acid versus placebo in patients with acute intracerebral hemorrhage. The results might have been affected by low statistical power as well as treatment delay. Registration: URL: http://www.controlled-trials.com; Unique identifier: ISRCTN93732214.
RESULTS: Primary outcome will be the ability of tranexamic acid to limit absolute haematoma volume on computed tomography at 24 h (± 12 h) after randomisation among spot sign positive and spot sign negative participants, respectively. Within all outcome measures, the effect of tranexamic acid in spot sign positive/negative participants will be compared using tests of interaction. This sub-study will investigate the important clinical hypothesis that spot sign positive patients might benefit more from administration of tranexamic acid compared to spot sign negative patients. Trial registration ISRCTN93732214 ( http://www.isrctn.com ).