Smoking problem is considered as one of the hot topics for many years. In spite of overpowering facts about the dangers, smoking is still a bad habit widely spread and socially accepted. Many people start smoking during their gymnasium period. The discovery of the dangers of smoking gave a warning sign of danger for individuals. There are different statistical methods used to analyze the dangers of smoking. In this study, we apply an algebraic statistical method to analyze and classify real data using Markov basis for the independent model on the contingency table. Results show that the Markov basis based classification is able to distinguish different date elements. Moreover, we check our proposed method via information theory by utilizing the Shannon formula to illustrate which one of these alternative tables is the best in term of independent.
We study generalized variable projective synchronization between two unified time delayed systems with constant and modulated time delays. A novel Krasovskii-Lyapunov functional is constructed and a generalized sufficient condition for synchronization is derived analytically using the Lyapunov stability theory and adaptive techniques. The proposed scheme is valid for a system of n-numbers of first order delay differential equations. Finally, a new neural oscillator is considered as a numerical example to show the effectiveness of the proposed scheme.
Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.