Displaying all 3 publications

Abstract:
Sort:
  1. Khan MF, Hamid AH, Bari MA, Tajudin ABA, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1195-1206.
    PMID: 30308807 DOI: 10.1016/j.scitotenv.2018.09.072
    Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 μm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 μm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 μm) into the alveolar (AL) region was higher (0.30 and 0.25 μg/h, respectively) than the upper airway (UA) (0.29 and 0.24 μg/h, respectively) and tracheobronchial (TB) regions (0.02 μg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 μg/h, respectively) than in the TB (0.18 and 0.15 μg/h, respectively) and the AL regions (1.09 and 0.91 μg/h, respectively); a similar pattern was also observed for PM10.
    Matched MeSH terms: Inhalation Exposure/statistics & numerical data*
  2. Chean KY, Abdulrahman S, Chan MW, Tan KC
    Int J Occup Environ Med, 2019 10;10(4):203-215.
    PMID: 31586385 DOI: 10.15171/ijoem.2019.1657
    BACKGROUND: Despite its excellent psychometric properties, St George's Respiratory Questionnaire (SGRQ) has not been previously used in measuring respiratory quality of life (RQoL) among traffic police and firefighters who are at risk of poor respiratory health by virtue of their occupations.

    OBJECTIVE: To assess and compare the RQoL of the occupationally exposed (firefighters and traffic police) and the occupationally unexposed populations in Penang, Malaysia.

    METHODS: We recruited male traffic police and firefighters from 5 districts of Penang by convenient sampling during June to September 2018. Participants completed the SGRQ. Scores (symptoms, activity, impacts, total) were derived using a scoring calculator. Higher scores indicate poorer RQoL. Univariate and multivariate linear regression models were fitted to explore the relationship of the independent predictive factors with participants' RQoL.

    RESULTS: We recruited 706 participants---211 firefighters, 198 traffic police, and 297 from general population. Smokers had significantly higher scores than non-smokers in all SGRQ domains. Regardless of smoking status, the "occupationally exposed group" had higher symptoms score than the "occupationally unexposed group," who had higher activity and impact scores. Smoking status, comorbidity status and monthly income were significant independent predictors of SGRQ total score.

    CONCLUSION: In comparison with the general population, firefighters and traffic police reported poorer RQoL; smoking further deteriorated their respiratory health. There is a need to strengthen preventive health measures against occupational disease and smoking cessation among firefighters and traffic police.

    Matched MeSH terms: Inhalation Exposure/statistics & numerical data*
  3. Nazariah SS, Juliana J, Abdah MA
    Glob J Health Sci, 2013 Jul;5(4):93-105.
    PMID: 23777726 DOI: 10.5539/gjhs.v5n4p93
    In the last few years, air within homes have been indicates by various and emerging body as more serious polluted than those outdoor. Prevalence of respiratory inflammation among school children aged 8 and 10 years old attending national primary schools in urban and rural area were conducted in Klang Valley. Two population studies drawn from the questionnaires were used to investigate the association between indoor particulate matter (PM2.5 & PM10) in a home environment and respiratory implication through the understanding of biological responses. Approximately 430 healthy school children of Standard 2 and Standard 5 were selected. Indication of respiratory symptoms using adaptation questionnaire from American Thoracic Society (1978). Sputum sample collection taken for biological analysis. IL-6 then was analyse by using ELISA techniques. Indoor PM2.5 and PM10 were measured using Dust Trak Aerosol Monitor. The mean concentration of PM2.5 (45.38 µg/m3) and PM10 (80.07 µg/m3) in urban home environment is significantly higher compared to those in rural residential area (p=0.001). Similar trend also shows by the prevalence of respiratory symptom. Association were found with PM2.5 and PM10 with the level of IL-6 among school children. A greater exposure to PM2.5 and PM10 are associated with higher expression of IL-6 level suggesting that the concentration of indoor particulate in urban density area significantly influence the health of children.
    Matched MeSH terms: Inhalation Exposure/statistics & numerical data
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links