Displaying all 15 publications

Abstract:
Sort:
  1. Nikzad S, Tan SG, Yong Seok Yien C, Ng J, Alitheen NB, Khan R, et al.
    J Med Primatol, 2014 Dec;43(6):433-44.
    PMID: 24930735 DOI: 10.1111/jmp.12130
    The genetic diversity and structure of long-tailed macaques (Macaca fascicularis) in Peninsular Malaysia, a widely used non-human primate species in biomedical research, have not been thoroughly characterized.
    Matched MeSH terms: Macaca fascicularis/genetics*
  2. Liedigk R, Kolleck J, Böker KO, Meijaard E, Md-Zain BM, Abdul-Latiff MA, et al.
    BMC Genomics, 2015 Mar 21;16:222.
    PMID: 25887664 DOI: 10.1186/s12864-015-1437-0
    BACKGROUND: Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxon's range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing.

    RESULTS: Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma.

    CONCLUSIONS: Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies.

    Matched MeSH terms: Macaca fascicularis/genetics*
  3. Smith DG, Ng J, George D, Trask JS, Houghton P, Singh B, et al.
    Am. J. Phys. Anthropol., 2014 Sep;155(1):136-48.
    PMID: 24979664 DOI: 10.1002/ajpa.22564
    Two subspecies of cynomolgus macaques (Macaca fascicularis) are alleged to co-exist in the Philippines, M. f. philippensis in the north and M. f. fascicularis in the south. However, genetic differences between the cynomolgus macaques in the two regions have never been studied to document the propriety of their subspecies status. We genotyped samples of cynomolgus macaques from Batangas in southwestern Luzon and Zamboanga in southwestern Mindanao for 15 short tandem repeat (STR) loci and sequenced an 835 bp fragment of the mtDNA of these animals. The STR genotypes were compared with those of cynomolgus macaques from southern Sumatra, Singapore, Mauritius and Cambodia, and the mtDNA sequences of both Philippine populations were compared with those of cynomolgus macaques from southern Sumatra, Indonesia and Sarawak, Malaysia. We conducted STRUCTURE and PCA analyses based on the STRs and constructed a median joining network based on the mtDNA sequences. The Philippine population from Batangas exhibited much less genetic diversity and greater genetic divergence from all other populations, including the Philippine population from Zamboanga. Sequences from both Batangas and Zamboanga were most closely related to two different mtDNA haplotypes from Sarawak from which they are apparently derived. Those from Zamboanga were more recently derived than those from Batangas, consistent with their later arrival in the Philippines. However, clustering analyses do not support a sufficient genetic distinction of cynomolgus macaques from Batangas from other regional populations assigned to subspecies M. f. fascicularis to warrant the subspecies distinction M. f. philippensis.
    Matched MeSH terms: Macaca fascicularis/genetics*
  4. Yuasa I, Umetsu K, Shotake T, Ishida T, Takenaka O, Terao K, et al.
    Electrophoresis, 1990 Oct;11(10):840-5.
    PMID: 2079025
    Genetic variation of orosomucoid (ORM) in the genus Macaca was investigated. Plasma samples were subjected to isoelectric focusing in a pH range of 4-6.5, followed by immunoprinting with anti-human ORM antibodies. A total of 25 alleles were identified in 231 Asian macaques belonging to 13 species from 23 populations and 22 members belonging to a family of M. fascicularis. Family data presented evidence for a codominant mode of inheritance with multi-alleles at a single autosomal locus. A population study revealed enormous intra- and interspecies variations. The heterozygosity values varied from 0.855 in M. fascicularis (Malaysia) to 0.000 in M. radiata (India), M. silenus (India) and M. arctoides (Malaysia).
    Matched MeSH terms: Macaca fascicularis/genetics*
  5. Tian S, Meng YH, Liu MY, Sun F, Chen JH, Du HL, et al.
    Zool Res, 2013 Apr;34(2):97-102.
    PMID: 23572358 DOI: 10.3724/SP.J.1141.2013.02097
    In most Old world monkey species, TRIM5α plays a role in combating retroviruses and restricting HIV-1. Alongside TRIM5α, the TRIMCyp fusion gene formed by the retrotransposition of a CypA pseudogene cDNA to 3' terminal or 3'-UTR of TRIM5 gene in these monkeys has become a key research area in anti HIV-1 factors. The regional differences, gene frequencies, genotypes, and retrovirus restrictive activities of TRIMCyp vary among different primate species. While the frequencies of cynomolgus TRIMCyp have been studied in several areas of Southeast Asia, the frequency and prevalence of cynomolgus TRIMCyp in China remains unclear. In this study, we screened 1, 594 cynomolgus samples from 11 monkey manufacturers located across 5 provinces in China. Our results showed that the frequencies of TRIMCyp range from 7.65% to 19.79%, markedly lower than the frequencies found in monkey species in the Philippines, Malaysia and Indonesia (ranging from 34.85% to 100%). We speculate that potentially the latter were isolated groups established since 1978. The NE haplotype frequencies of cynomolgus TRIMCyp were 4.93% in China, also significantly lower than those found in species in the Philippines, Malaysia and Indonesia (from 11.1% to 14.3%). Our research provides interesting findings that contribute towards a more firm basis of further studies of HIV-1 animal models and relevant pathogenesis.
    Matched MeSH terms: Macaca fascicularis/genetics*
  6. Pendley CJ, Becker EA, Karl JA, Blasky AJ, Wiseman RW, Hughes AL, et al.
    Immunogenetics, 2008 Jul;60(7):339-51.
    PMID: 18504574 DOI: 10.1007/s00251-008-0292-4
    Cynomolgus macaques (Macaca fascicularis) are quickly becoming a useful model for infectious disease and transplantation research. Even though cynomolgus macaques from different geographic regions are used for these studies, there has been limited characterization of full-length major histocompatibility complex (MHC) class I immunogenetics of distinct geographic populations. Here, we identified 48 MHC class I cDNA nucleotide sequences in eleven Indonesian cynomolgus macaques, including 41 novel Mafa-A and Mafa-B sequences. We found seven MHC class I sequences in Indonesian macaques that were identical to MHC class I sequences identified in Malaysian or Mauritian macaques. Sharing of nucleotide sequences between these geographically distinct populations is also consistent with the hypothesis that Indonesia was a source of the Mauritian macaque population. In addition, we found that the Indonesian cDNA sequence Mafa-B7601 is identical throughout its peptide binding domain to Mamu-B03, an allele that has been associated with control of Simian immunodeficiency virus (SIV) viremia in Indian rhesus macaques. Overall, a better understanding of the MHC class I alleles present in Indonesian cynomolgus macaques improves their value as a model for disease research, and it better defines the biogeography of cynomolgus macaques throughout Southeast Asia.
    Matched MeSH terms: Macaca fascicularis/genetics*
  7. Bunlungsup S, Kanthaswamy S, Oldt RF, Smith DG, Houghton P, Hamada Y, et al.
    Am J Primatol, 2017 12;79(12).
    PMID: 29095514 DOI: 10.1002/ajp.22726
    In the past decade, many researchers have published papers about hybridization between long-tailed and rhesus macaques. These previous works have proposed unidirectional gene flow with the Isthmus of Kra as the zoogeographical barrier of hybridization. However, these reports analyzed specimens of unknown origin and/or did not include specimens from Thailand, the center of the proposed area of hybridization. Collected specimens of long-tailed and rhesus macaques representing all suspected hybridization areas were examined. Blood samples from four populations each of long-tailed and rhesus macaques inhabiting Thailand, Myanmar, and Laos were collected and analyzed with conspecific references from China (for rhesus macaques) and multiple countries from Sundaic regions (for long-tailed macaques). Ninety-six single nucleotide polymorphism (SNP) markers specifically designed to interrogate admixture and ancestry were used in genotyping. We found genetic admixture maximized at the hybrid zone (15-20°N), as well as admixture signals of varying strength in both directions outside of the hybrid zone. These findings show that the Isthmus of Kra is not a barrier to gene flow from rhesus to long-tailed populations. However, to precisely identify a southernmost barrier, if in fact a boundary rather than simple isolation by distance exists, the samples from peninsular Malaysia must be included in the analysis. Additionally, a long-tailed to rhesus gene flow boundary was found between northern Thailand and Myanmar. Our results suggest that selection of long-tailed and rhesus macaques, the two most commonly used non-human primates for biomedical research, should take into account not only the species identification but also the origin of and genetic admixture within and between the species.
    Matched MeSH terms: Macaca fascicularis/genetics*
  8. Abdul-Latiff MA, Ruslin F, Faiq H, Hairul MS, Rovie-Ryan JJ, Abdul-Patah P, et al.
    Biomed Res Int, 2014;2014:897682.
    PMID: 25143948 DOI: 10.1155/2014/897682
    The phylogenetic relationships of long-tailed macaque (Macaca fascicularis fascicularis) populations distributed in Peninsular Malaysia in relation to other regions remain unknown. The aim of this study was to reveal the phylogeography and population genetics of Peninsular Malaysia's M. f. fascicularis based on the D-loop region of mitochondrial DNA. Sixty-five haplotypes were detected in all populations, with only Vietnam and Cambodia sharing four haplotypes. The minimum-spanning network projected a distant relationship between Peninsular Malaysian and insular populations. Genetic differentiation (F(ST), Nst) results suggested that the gene flow among Peninsular Malaysian and the other populations is very low. Phylogenetic tree reconstructions indicated a monophyletic clade of Malaysia's population with continental populations (NJ = 97%, MP = 76%, and Bayesian = 1.00 posterior probabilities). The results demonstrate that Peninsular Malaysia's M. f. fascicularis belonged to Indochinese populations as opposed to the previously claimed Sundaic populations. M. f. fascicularis groups are estimated to have colonized Peninsular Malaysia ~0.47 million years ago (MYA) directly from Indochina through seaways, by means of natural sea rafting, or through terrestrial radiation during continental shelf emersion. Here, the Isthmus of Kra played a central part as biogeographical barriers that then separated it from the remaining continental populations.
    Matched MeSH terms: Macaca fascicularis/genetics*
  9. Smith DG, McDonough JW, George DA
    Am J Primatol, 2007 Feb;69(2):182-98.
    PMID: 17177314
    An 835 base pair (bp) fragment of mitochondrial DNA (mtDNA) was sequenced to characterize genetic variation within and among 1,053 samples comprising five regional populations each of longtail macaques (Macaca fascicularis) and rhesus macaques (Macaca mulatta), and one sample each of Japanese (M. fuscata) and Taiwanese (M. cyclopis) macaques. The mtDNA haplotypes of longtail macaques clustered in two large highly structured clades (Fas1 and Fas2) of a neighbor-joining tree that were reciprocally monophyletic with respect to those representing rhesus macaques, Japanese macaques, and Taiwanese macaques. Both clades exhibited haplotypes of Indonesian and Malaysian longtail macaques widely dispersed throughout them; however, longtail macaques from Indochina, Philippines, and Mauritius each clustered in a separate well-defined clade together with one or a few Malaysian and/or Indonesian longtail macaques, suggesting origins on the Sunda shelf. Longtail macaques from Malaysia and Indonesia were far more genetically diverse, and those from Mauritius were far less diverse than any other population studied. Nucleotide diversity between mtDNA sequences of longtail macaques from different geographic regions is, in some cases, greater than that between Indian and Chinese rhesus macaques. Approximately equal amounts of genetic diversity are due to differences among animals in the same regional population, different regional populations, and different species. A greater proportion of genetic variance was explained by interspecies differences when Japanese and Taiwanese macaques were regarded as regional populations of rhesus macaques than when they were treated as separate species. Rhesus macaques from China were more closely related to both Taiwanese and Japanese macaques than to their own conspecifics from India.
    Matched MeSH terms: Macaca fascicularis/genetics*
  10. Tanaka H, Kawamoto Y, Terao K
    J Med Primatol, 1991 May;20(3):126-32.
    PMID: 1895332
    Vitamin D-binding protein (DBP) of crab-eating macaques (Macaca fascicularis) was examined by means of three electrophoretic methods. DBP phenotypes were observed to be one or two bands in each method. All of DBP molecular variants could be detected by the simultaneous typing with these three methods. Family analysis suggested that DBP variants followed the mode of autosomal codominant inheritance. A total of 17 phenotypes governed by at least 11 alleles were observed in the populations of Malaysia, Indonesia, and the Philippines. The genetic variability was high in Malaysian and Indonesian populations but low in the Philippine population.
    Matched MeSH terms: Macaca fascicularis/genetics*
  11. Higashino A, Sakate R, Kameoka Y, Takahashi I, Hirata M, Tanuma R, et al.
    Genome Biol, 2012;13(7):R58.
    PMID: 22747675 DOI: 10.1186/gb-2012-13-7-r58
    The genetic background of the cynomolgus macaque (Macaca fascicularis) is made complex by the high genetic diversity, population structure, and gene introgression from the closely related rhesus macaque (Macaca mulatta). Herein we report the whole-genome sequence of a Malaysian cynomolgus macaque male with more than 40-fold coverage, which was determined using a resequencing method based on the Indian rhesus macaque genome.
    Matched MeSH terms: Macaca fascicularis/genetics*
  12. Takenaka A, Ueda S, Terao K, Takenaka O
    Mol Biol Evol, 1991 May;8(3):320-6.
    PMID: 2072861
    Alpha-globin genes in crab-eating macaques were found to be triplicated at high frequencies according to restriction-enzyme comparisons. The frequencies of triplicated alpha-globin genes in macaques originally from Malaysia and Indonesia were 0.432 and 0.275, respectively, while no triplication was found in individuals from either the Philippines or northern and central Thailand. Quadruplicated alpha-globin genes were also observed, at frequencies of 0.045 (Malaysia), 0.075 (Indonesia), and 0.021 (the Philippines). A single locus was detected in only one of 40 chromosomes from Indonesia (frequency 0.025).
    Matched MeSH terms: Macaca fascicularis/genetics*
  13. Bunlungsup S, Imai H, Hamada Y, Matsudaira K, Malaivijitnond S
    Am J Primatol, 2017 02;79(2):1-13.
    PMID: 27643851 DOI: 10.1002/ajp.22596
    Macaca fascicularis fascicularis is distributed over a wide area of Southeast Asia. Thailand is located at the center of their distribution range and is the bridge connecting the two biogeographic regions of Indochina and Sunda. However, only a few genetic studies have explored the macaques in this region. To shed some light on the evolutionary history of M. f. fascicularis, including hybridization with M. mulatta, M. f. fascicularis and M. mulatta samples of known origins throughout Thailand and the vicinity were analyzed by molecular phylogenetics using mitochondrial DNA (mtDNA), including the hypervariable region 1, and Y-chromosomal DNA, including SRY and TSPY genes. The mtDNA phylogenetic analysis divided M. f. fascicularis into five subclades (Insular Indonesia, Sundaic Thai Gulf, Vietnam, Sundaic Andaman sea coast, and Indochina) and revealed genetic differentiation between the two sides of the Thai peninsula, which had previously been reported as a single group of Malay peninsular macaques. From the estimated divergence time of the Sundaic Andaman sea coast subclade, it is proposed that after M. f. fascicularis dispersed throughout Southeast Asia, some populations on the south-easternmost Indochina (eastern Thailand, southern Cambodia and southern Vietnam at the present time) migrated south-westwards across the land bridge, which was exposed during the glacial period of the late Pleistocene epoch, to the southernmost Thailand/northern peninsular Malaysia. Then, some of them migrated north and south to colonize the Thai Andaman sea coast and northern Sumatra, respectively. The SRY-TSPY phylogenetic analysis suggested that male-mediated gene flow from M. mulatta southward to M. f. fascicularis was restricted south of, but close to, the Isthmus of Kra. There was a strong impact of the geographical factors in Thailand, such as the Isthmus of Kra, Nakhon Si Thammarat, and Phuket ranges and Sundaland, on M. f. fascicularis biogeography and their hybridization with M. mulatta.
    Matched MeSH terms: Macaca fascicularis/genetics*
  14. Osada N, Nakagome S, Mano S, Kameoka Y, Takahashi I, Terao K
    Genetics, 2013 Nov;195(3):1027-35.
    PMID: 24026095 DOI: 10.1534/genetics.113.156703
    The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian-Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome.
    Matched MeSH terms: Macaca fascicularis/genetics*
  15. Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, et al.
    PLoS Genet, 2017 Sep;13(9):e1007008.
    PMID: 28922357 DOI: 10.1371/journal.pgen.1007008
    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
    Matched MeSH terms: Macaca fascicularis/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links