Displaying all 6 publications

Abstract:
Sort:
  1. Govindapillai S, Soon LK, Haw SC
    F1000Res, 2021;10:881.
    PMID: 34900233 DOI: 10.12688/f1000research.72843.2
    Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4.
    Matched MeSH terms: Metadata*
  2. Haruna K, Akmar Ismail M, Damiasih D, Sutopo J, Herawan T
    PLoS One, 2017;12(10):e0184516.
    PMID: 28981512 DOI: 10.1371/journal.pone.0184516
    Research paper recommenders emerged over the last decade to ease finding publications relating to researchers' area of interest. The challenge was not just to provide researchers with very rich publications at any time, any place and in any form but to also offer the right publication to the right researcher in the right way. Several approaches exist in handling paper recommender systems. However, these approaches assumed the availability of the whole contents of the recommending papers to be freely accessible, which is not always true due to factors such as copyright restrictions. This paper presents a collaborative approach for research paper recommender system. By leveraging the advantages of collaborative filtering approach, we utilize the publicly available contextual metadata to infer the hidden associations that exist between research papers in order to personalize recommendations. The novelty of our proposed approach is that it provides personalized recommendations regardless of the research field and regardless of the user's expertise. Using a publicly available dataset, our proposed approach has recorded a significant improvement over other baseline methods in measuring both the overall performance and the ability to return relevant and useful publications at the top of the recommendation list.
    Matched MeSH terms: Metadata
  3. Ali NM, Khan HA, Then AY, Ving Ching C, Gaur M, Dhillon SK
    PeerJ, 2017;5:e3811.
    PMID: 28929028 DOI: 10.7717/peerj.3811
    Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO), an automated classification architecture of existing fish taxa which provides taxonomic information on unknown fish based on metadata restrictions. It is designed to support knowledge discovery, provide semantic annotation of fish and fisheries resources, data integration, and information retrieval. Automated classification for unknown specimens is a unique feature that currently does not appear to exist in other known ontologies. Examples of automated classification for major groups of fish are demonstrated, showing the inferred information by introducing several restrictions at the species or specimen level. The current version of FO has 1,830 classes, includes widely used fisheries terminology, and models major aspects of fish taxonomy, grouping, and character. With more than 30,000 known fish species globally, the FO will be an indispensable tool for fish scientists and other interested users.
    Matched MeSH terms: Metadata
  4. Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah YW, et al.
    Sci Data, 2020 07 09;7(1):225.
    PMID: 32647314 DOI: 10.1038/s41597-020-0534-3
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
    Matched MeSH terms: Metadata
  5. Vos RA, Katayama T, Mishima H, Kawano S, Kawashima S, Kim JD, et al.
    F1000Res, 2020;9:136.
    PMID: 32308977 DOI: 10.12688/f1000research.18236.1
    We report on the activities of the 2015 edition of the BioHackathon, an annual event that brings together researchers and developers from around the world to develop tools and technologies that promote the reusability of biological data. We discuss issues surrounding the representation, publication, integration, mining and reuse of biological data and metadata across a wide range of biomedical data types of relevance for the life sciences, including chemistry, genotypes and phenotypes, orthology and phylogeny, proteomics, genomics, glycomics, and metabolomics. We describe our progress to address ongoing challenges to the reusability and reproducibility of research results, and identify outstanding issues that continue to impede the progress of bioinformatics research. We share our perspective on the state of the art, continued challenges, and goals for future research and development for the life sciences Semantic Web.
    Matched MeSH terms: Metadata
  6. Diez Benavente E, Campos M, Phelan J, Nolder D, Dombrowski JG, Marinho CRF, et al.
    PLoS Genet, 2020 02;16(2):e1008576.
    PMID: 32053607 DOI: 10.1371/journal.pgen.1008576
    Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.
    Matched MeSH terms: Metadata
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links